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Abstract

A buffer overflow attack is perhaps the most common attack used to compromise the security of a host.
A buffer overflow can be used to change the function return address and redirect execution to execute
the attacker’s code. We present a hardware-based solution, called SmashGuard, to protecting the return
addresses stored on the program stack. SmashGuard protects against all known forms of attack on the
function return address pointer. With each function call instruction a new return address is pushed onto an
extra hardware stack. A return instruction compares its return address to the address from the top of the
hardware stack. If a mismatch is detected, then an exception is raised. Because the stack operations and
checks are done in hardware, and in parallel with the usual execution of call and return instructions, our best-
performing implementation scheme has virtually no performance overhead. While previous software-based
approaches’ average performance degradation for the SPEC2000 benchmarks is only 2.8%, their worst-case
degradation is up to 8.3%. Apart from the lack of robustness in performance, the software approaches’
key disadvantages are less security coverage and the need for recompilation of applications. SmashGuard,
on the other hand, is secure and does not require recompilation, though the OS needs to be modified to
save/restore the hardware stack at context switches, and when function call nesting exceeds the hardware
stack depth.
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Chapter 1

Introduction

Computer security is critical in this increasingly networked world. Attacks continue to pose a serious threat
to the effective use of computers and often disrupt commercial services worldwide, results in embarrassment
and significant loss of revenue. While techniques for protecting the against malicious attacks have been
confined primarily to the domain of software, the increasing demand for computer security presents a new
opportunity for hardware research.

In this paper, we describe such an opportunity – we propose microarchitectural support for automatic
detection/prevention of what is perhaps the most prevalent vulnerability today: attacks on the function
return address pointer. The most common example of an attack on the function return address pointer is
a buffer overflow attack [1]. The Code Red [2] and Code Red II [3] worms of 2001 and W32/Blaster [4]
and W32/Nachi-A [5] worms of 2003 all exploited such a vulnerability in Microsoft’s IIS [6] and Windows
RPC [7] implementations, respectively, to propagate theirselves across the Internet. Although it is fairly
simple to fix an individual instance of a buffer overflow vulnerability, it continues to remain one of the most
popular methods by which attackers compromise a host. In 2002, buffer overflow vulnerabilities were found
in 10 of the 31 advisories published by CERT [8] and in 5 of the top 20 vulnerabilities compiled by the
SANS Institute [9]. Thus far in 2003, 17 out of 27 advisories published by CERT [10] and 13 out of 20
vulnerabilities compiled by the SANS Institute [11], have been on buffer overflow vulnerabilities,

Buffer overflow attacks overwrite data on the stack and can be used to redirect execution by changing the
value stored on the process stack for the return address of a function call. We propose SmashGuard, a

Linux/UNIX Apps Windows Apps

BIND IIS

RPCs MS SQL

APACHE IE

SENDMAIL RPCs

SNMP MSDAC

SSH

NIS/NSF

OpenSSL

Table 1.1: Applications vulnerable to buffer overflow attacks
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Figure 1.1: Memory Organization

hardware-based approach to detecting such attacks, in which we add a small hardware stack to the pipeline.
With each function call instruction the return address and the current stack frame pointer1 are pushed onto
the hardware stack. A return instruction compares its return address against the address from the top of the
hardware stack. A mismatch indicates an attack, and raises an exception. SmashGuard provides a unique
solution not only with advantages over existing software solutions in terms of performance robustness,
security coverage, and application transparency, but also at low implementation cost. We discuss each of
these benefits in turn.

1. Because the stack operations and checks are done in hardware, and in parallel with the usual execution
of call and return instructions, the best-performing SmashGuard implementation scheme incurs little
performance overhead.

2. Many software solutions, do not protect against all forms of attack on the return address pointer, for
instance they may fail to protect against attacks that use a level-of-indirection to overwrite the return
address. In contrast, SmashGuard protects against all forms of attack on the return address pointer.

3. Many software solutions’ key disadvantage is the need for recompilation of the source code. Smash-
Guard, on the other hand, is a hardware modification with a kernel patch that supports the hardware
technology.

4. Finally, the cost of our solution is a modest 2-KB storage for the hardware stack, and a 2-KB storage for
an internal table used by our best-performing implementation scheme. Because the stack is accessed at
instruction commit, which is not on the execution path of instructions, SmashGuard does not impact
the critical path of the pipeline.

In Section 2 we describe the vulnerability of the function return address and the different ways in which an
attacker can exploit this vulnerability. In Section 3 we summarize related work to point out their strengths
and weaknesses, both in terms of performance and functionality. Then in Section 4 we describe our proposed
hardware solution in detail. In Section 5 we present performance results. Finally in Section 6 we provide
our conclusions and we outline future extensions to our work.

1In Section 4.2 we explain why to handle setjmp()/longjmp() properly we need to also store the stack frame pointer.
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Chapter 2

Anatomy of an Attack

This section provides an overview of the vulnerability of return address pointers stored on the stack and
describes how “stack smashing” attacks exploit this vulnerability to execute the attacker’s code.

2.1 The Stack

Before describing the vulnerabilities and the attacks affecting the function return address, we first briefly
review the memory organization of a process. On the left hand side of Figure 1.1, we show the three logical
areas of memory used by a process. The text-only portion contains the program instructions, literal pool,
and static data. The stack is used to implement functions and procedures, and the heap is used for memory
that is dynamically allocated by the process during run time. During the function prologue, the function
arguments are pushed on to the stack in reverse order and then the return address is pushed onto the
stack.1 The return address holds the address of the instruction immediately following the function call and
is an address in the program code section of the process’ memory space. The prologue finishes by pushing
on the previous frame pointer followed by the local variables of the function. The function arguments,
return address, previous frame pointer, and local variables comprise a stack frame. Because functions can
be nested, the previous frame pointer provides a handy mechanism for quickly deallocating space on the
stack when the function exits. During the function epilogue, the return address is read off of the stack and
the stack frame is deallocated dynamically by moving the stack pointer to the top of the previous stack
frame.

2.2 Vulnerability of the Function Return Address

The return address in a stack frame points to the next instruction to execute after the current function
returns (finishes). This introduces a vulnerability that allows an attacker to cause a program to execute
arbitrary code. An attacker can overwrite the function return address with one of the exploit techniques
explained in Section 2.3.1 and redirect execution to run the attacker’s code. When the function exits, the
program execution will continue from the location pointed to by the stored return address. On successful
modification of the return address, the attacker can execute commands with the same level of privilege as
that of the attacked program. If the compromised program is running as root, then the attacker can use the

1Our discussion is based on the x86 architecture because it is perhaps the most widely known; for other architectures,

details will vary slightly.
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injected code to spawn a root or superuser shell, and take control of the machine. Note that the attacker
can choose any code to execute, but typically will spawn a shell in order to install a back door on the
compromised host.

2.3 Exploiting the Vulnerability

There are several methods for overwriting the function return address and two types of approaches to where
to redirect execution. In this section we first describe different vulnerabilities that allow an attacker to
overwrite the return address on the stack, we explain possible targets to which to redirect execution, and
then explain how the attacker can inject the crafted exploit into the vulnerable code.

2.3.1 Overwriting the Return Address on the Stack

Buffer overflow attacks are the undesirable side-effects of unbounded string copy functions. The most
common examples from the C programming language are strcpy() and gets() which copy each character
from a source buffer to a destination buffer until a null or newline character is reached, respectively. The
vulnerability arises because neither checks whether the destination buffer is large enough to fit the source
buffer’s contents. If the destination buffer is a local variable (and therefore stored on the stack in the frame),
then an attacker can exploit this vulnerability to overflow the buffer and overwrite a pointer on the stack
or the return address. Note that for most architectures (e.g., x86, SPARC, MIPS) the stack grows down
from high to low addresses, whereas a string copy on the stack moves up from low to high addresses. It
is trivial to overflow a buffer to overwrite the return address which is located above the local variables in
that particular stack frame. There are two types of buffer overflow attacks to overwrite the function return
address:

Type 1: A local buffer (character array) is filled in excess of its bounds (overflowed) to overwrite the return
address on the stack, which is adjacent2 to the local buffer; or

Type 2: A local buffer is overflowed to overwrite an adjacent pointer variable with a pointer to the return
address on the stack. Then the return address is overwritten by an assignment to the pointer.

Format string attacks are relatively new and are thought to have first appeared in mid 2000 [12]. We
provide a brief overview here, but for details the reader is referred to [12, 13]. Similar to a buffer overflow
attack, format string attacks modify the return address in order to redirect the flow of control to execute
the attacker’s code. In the C programming language, format strings allow the programmer to format inputs
and outputs to a program using conversion specifications. For example, in the statement printf("%s is

%d years old.",name,age), the string in quotes is the format string, %s and %d are conversion specifica-
tions, and name and age are the specification arguments. When printf() is called, a stack frame is created
and the specification arguments are pushed on the stack along with a pointer to the format string. When
the function executes, the conversion specifiers will be replaced by the arguments on the stack. The vul-
nerability arises because, programmers write statements like printf(string) instead of the proper form:
printf("%s",string). The statements appear identical unless string contains conversion specifiers. In
this case, for each conversion specifier, printf() will pop an argument from the stack. For example, consider
the following:

2The frame pointer is stored between the local buffers on the stack and the return address, which needs to be kept in

consideration
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int foo1(char *str) {

printf(str);

}

If the user calls foo1() with an argument string "%08x.%08x", the function will pop two words from the
stack and display them in hex format with a dot (.) in between. Using this technique, the attacker can
dump the contents of the entire stack. The key to this attack is the "%n" conversion specifier, which pops
four bytes off the stack and writes the number of characters in the format string before "%n" to the address
pointed to by the popped four bytes. Basically, if we move up the stack popping values using "%08x",
and then just when we reach the return address we insert a "%n" in the format string, we would write the
number of characters we had in the format string so far onto the return address on the stack. Note that
length specifiers allow the creation of arbitrarily long format string “lengths” without needing the string
itself to be an arbitrary length.

Like buffer overflow attacks, format string attacks can be used to redirect execution to shellcode in the
stack (or heap) or to the system() call in libc. Format string attacks are similar to Type 2 buffer overflow
attacks, in the sense that the return address can be modified without touching anything else on the stack,
so methods that can prevent Type 2 buffer overflow attacks can also prevent format string attacks.

Malloc and Free exploits are based on heap buffer overflow attacks. They enable writing arbitrary
data to arbitrary places in the memory by overwriting the internal structures of the malloc() function.
The malloc() function keeps track of the free memory in the heap using pointers from one free block to
another. When two blocks that are next to each other are both free, then they are “coalesced together” to
form a bigger chunk in order to reduce internal fragmentation of free memory. During the coalescing of two
blocks, pointers are assigned values. If one of the coalescing free blocks has been overflowed, the pointers
can be used to write arbitrary data to arbitrary locations (e.g., return addresses) in the memory. For a
detailed explanation of this attack the reader is directed to [14, 15], and for our discussion this attack will
be considered similar in form to Type 2 buffer overflows.

Integer Overflows: We find it valuable to mention integer overflows in our discussion of attacks on the
return address even though they do not directly overwrite the function return address because they lead to
other attacks, most of the time buffer overflows.

int foo1(char *str, char *str2,

unsigned int size,

unsigned int size2) {

char local[256];

if((size + size2) > 256) { /*[1]*/

return -1;

}

strncpy(local, str, size); /*[2]*/

strncpy(local + size, str2, size2);

...

return 0;

}

The behavior of an integer overflow is undefined in ISO C99 standards, and most compilers ignore them.
This becomes dangerous when a the integer that is overflowed is used to calculate the size of a buffer or the
index into an array. The unsigned integers do not overflow but wrap around to 0.
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The above example, while slightly unrealistic, demonstrates a possible integer overflow attack that leads to
a buffer overflow attack. An attacker can bypass of the validation check at [1] with two large unsigned
numbers in size and size2 that result in a number smaller than 256 when added together. However,
when the string arguments str and str1 are copied to the local buffer local at [2] and the next line, the
strncpy will overflow the local buffer writing past the end of local. For a more detailed explanation, the
reader is directed to [16].

2.3.2 Where is the control redirected?

After an attacker overflows a buffer to overwrite the return address, there are two ways to redirect execution
to compromise a host:

Shellcode: The most well-known method to redirect execution is to overwrite the return address with an
address that points to a location in memory at which the attacker has placed shellcode – a hexadecimal
representation of assembly code to spawn a shell. Even though placing the shellcode into the local
buffer being overflowed is the most common case, above the return address on the stack, or in the heap
are also possible locations. If the attacked program has root privilege, then when control is redirected
to the injected shellcode, the attacker gets a root shell.

A buffer overflow usually contains both executable code as well as the address of where that code is
stored on the stack. Frequently, this is a single string constructed by the attacker with the executable
code first followed by enough repetitions of the target address that the return address is overwritten.
This requires knowing exactly where the executable code will be stored or else the attack will fail.
Attackers get around this by prepending a sequence of unneeded instructions (such as NOP) to their
string. This creates a ramp or sledge leading to the executable code. Now the modified return address
only needs to point somewhere in the ramp to cause a successful attack. While it still takes some
effort to find the proper range, an attacker only needs a close guess to hit the target. Note that the
attacker is not restricted to code that spawns a shell, but can put any code on the stack, such as a
worm.

system() function: The second choice for redirecting execution is called the return-to-libc attack. It was
invented to bypass protection methods that mark the stack as non-executable [17], which prevents
execution of code on the stack. The return-to-libc attack eliminates the need for shellcode by redirect-
ing execution to the system() call to create a shell. All the attack needs to do is copy the necessary
arguments on the stack and change the return address to point to the system call.

2.3.3 Methods of inputting the shellcode

There are three main ways of injecting malicious code into the vulnerable program. These are 1) user
input, 2) network connection and 3) environment variables. For example, a program might ask for a user
or file name from standard input. If the program uses gets() then a sufficiently large user response could
overflow the target buffer. An operating system might utilize a small buffer for the handling of ICMP echo
packets (as they are normally quite small) and suffer an overflow if an attacker sends an unusually large
packet (CVE-2000-0418). Similarly, if a program attempts to determine a user’s home directory via the
HOME environment variable, a malicious user might be able to cause an overflow by setting the value of
the variable to be an unusually long value.

6



Chapter 3

Related Work

Various tools and methods have been devised to stop these attacks with varying levels of security advantage
and performance overhead. Solutions that trade off a high level of security for better performance are
eventually bypassed by attackers and prove incomplete. On the other hand, high security solutions seriously
degrade the system performance due to the high frequency of integrity checks and high cost of software
based memory protection. Another issue that diminishes the feasibility of these tools and methods is their
lack of transparency to the user or to the operating system. We have split the existing work into five
groups: Static (and Dynamic) Analysis of Source Code, Modifications to the Executable, Modifications to
the Compiler, Modification to the System Software, and Hardware solutions. A thorough list of all buffer
overflow protection methods and tools is available from The Buffer Overflow Page [18].

3.1 Static (and Dynamic) Analysis of Source Code

Static analysis techniques try to identify potentially dangerous pointer de-references and unsafe function
calls in the source code. Because detecting buffer overflow vulnerabilities statically is undecidable, these
methods work on heuristics and are, therefore, neither sound nor complete. Several factors affect the
inadequacy of static analysis; difficulty of bounds checking, pointer analysis, and inter-procedural analysis,
and also the fact that the input to the program is not known at compile time. There is a collection of freely
available auditing tools for C/C++ code, but Wilander et al. [19] reports that static analysis tools do not
have a sufficiently high true positive rate or a sufficiently low false positive rate to be of use to programmers.
What they are used for is to help security auditors.

Wagner et al. [20] formulated the buffer overrun detection problem as an integer constraint problem and
used graph theoretic techniques to solve the constraints. This technique has a high rate of false alarms,
cannot handle pointers, double pointers and aliasing, and the analysis time is on the order of tens of minutes.

In a recent paper, Dor et al. [21] combined all known types of static analysis methods to propose a tool,
CSSV, for statically detecting all buffer overflows. Using procedural analysis, CSSV in-lines the source code
with annotations that have pre-, post-, and side-effect conditions (which they name “contracts”), analyzes
pointer interaction, checks for runtime string manipulation errors with assert(), and finally performs
conservative integer analysis. Although a 93% drop in false alarms is reported, writing manual contracts
for the source code is still required.

Larochelle and Evans [22] proposed a static analysis tool built upon LCLint with more expressive anno-
tations. Annotations used are the semantic comments for buffers that specify the highest index that can
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be safely written to and the highest index that can be safely read from. The annotations are used to
detect inconsistencies between the code written and its expected behavior. This method does not detect all
vulnerabilities and produces spurious warnings.

Dynamic checks inserted by static analysis analyze the run-time contents of the variables during program
execution. However, dynamic analysis is much harder than static and better results come with the price of
increased computation time.

Haugh and Bishop [23] extended Wagner, et al.’s [20] method for dynamic execution. This method uses
the STOBO tool to convert the vulnerabilities in the source code to the instrumented safe versions. The
paper reports that this method compares favorably to ITS4 and Wagner, et al.’s original method in that it
detects more vulnerabilities and has fewer false positives.

Yong and Horwitz [24] proposed a static analysis tool with dynamic checks to protect C programs from
attacks via invalid pointer dereferences. The method has a low runtime overhead, no false positives, requires
no source code modification, and protects against a wide variety of attacks via bad pointer dereferences.
The main idea is to use static analysis to detect un-safe pointers, and protect memory regions that are
not legitimate targets of these pointers. This method maintains a mirror of the memory locations that
can be pointed by un-safe pointers using one bit for every byte of the memory to specify whether each
mirrored byte is write-safe, i.e. legitimate. Although the method does not produce any false positives, the
tool doubles the application run-time.

Toth and Kruegel [25] proposed abstract payload execution of HTTP requests to detect the NOP sledge
which precedes the shellcode in most Type 1 buffer overflows. Toth and Kruegel report only 1.4% increase
in client contention rate and 2.9% decrease in client throughput. This method will only detect attacks that
use a NOP sledge with the shellcode.

3.2 Modification of the Executable

Bhatkar et al. [26] proposed a method called Address Obfuscation that transforms the object file at link
time (or the executable at load time) to 1) randomize the base addresses of stack, heap, and dynamically
loaded libraries; 2) randomize the location of the routines and static data in executables; 3) permute the
order of local variables on stack, static variables and routines in shared libraries and executables; and 4)
insert random gaps in stack frames, between successive malloc buffers and between static variables. This
method, which is very similar to PaX [27] except that PaX is a kernel patch, requires no change to the OS
or to the compiler but it is a probabilistic method that only hardens, but does not eliminate, the attacker’s
chances of success. The overhead of this method is incurred only at process startup and is not large.

Prasad and Chiueh [28] presents a static binary translation method that saves a redundant copy of the
return address on the stack in the return address repository (RAR) at the function prologue, compares the
saved return address with the original at the function epilogue, and flags an exception upon a mismatch. It is
implemented by inserting a jump instruction in the prologue and the epilogue to jump to the corresponding
code snippet and jump back to do the real prologue and real epilogue. The paper reports a 3% runtime
performance overhead and 16K per process space overhead. This method is not secure because the RAR is
protected with two mine zones above and below, therefore making this method vulnerable to type 2 attacks.

3.3 Modification of the Compiler

Stackguard [29, 30] is one of the earliest and most well-known compiler-based solutions. The additional
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code inserted at compile time places an integer of known value (called a canary) between the return address
and the local variables on the stack at the function prologue. If a local buffer on the stack is overflowed, the
attacker must overwrite the canary to reach the return address. StackGuard supports two types of canaries.
The random canary method inserts a 32-bit random canary after the return address in the function prologue,
and checks the integrity of its value before using the return address at epilogue. The terminating canary
consists of four string termination characters: null, CR, -1, and LF. Note that each one of these characters
is a terminating value for at least one unbounded data copying function. If the attacker tries to overwrite
the canary with the same terminating values, the overflow will never reach the return address because the
string copy will be terminated at the canary.

As pointed out by Bulba and Kil3r [31], StackGuard only protects against Type 1 buffer overflows. In
addition, it requires recompilation of the source code. Because it modifies the stack contents, programs
dependent on the stack structure (e.g., debuggers) will no longer work. Finally, the random canary needs to
be protected. For every function call and return instruction executed StackGuard must write the random
canary to the stack and compare it on return. A varying performance overhead of 6-80% is reported in [29]
which is a function of the ratio of the instructions required for the modified prologue and epilogue to the
number of original function instructions.

StackShield [32] is a compiler modification that provides two different protection mechanisms for protecting
the return address. Global ret stack implements a separate stack for the return addresses in a global array
of 256 32-bit entries. For each function call, the return address is pushed onto both the real stack and this
additional stack. On function return, the address stored on the separate stack is used. Because there is no
comparison to the address stored on the stack, in contrast to the other solutions, attacks are prevented but
not detected, which may be dangerous. Another weakness of this approach is that the separate stack needs
to be protected, otherwise the attacker can use a pointer to overwrite the return address on the separate
stack. Ret range check, a faster alternative to global return stack, saves the return address of the currently
executing function in a global long integer, and then compares it to the return address on the stack when
the function returns. This method does not protect against attacks on the return address using pointers.
Moreover, unless the global long integer variable is protected, it can also be overwritten.

Both of these methods have little performance overhead because neither the array nor the global integer is
protected.

Return Address Defender [33] creates a global integer array called the Return Address Repository (RAR)
that holds the copies of the return addresses pushed on the stack. There are two versions of RAD that
differ in the amount and cost of protection to the RAR. The first and less expensive method, MineZone
RAD inserts two minezones above and below the RAR and marks them as read-only with the mprotect()

system call. Any attempt by the attacker to overflow a buffer and overwrite the RAR would cause a trap
and be denied by the OS. This method protects against Type 1 buffer overflows but can be defeated by
Type 2. The second version of RAD, Read-Only RAD marks the entire RAR as read-only with mprotect()

to achieve high security. This incurs a large overhead because during the function prologue, the RAR is
marked as writable, the return address is saved into the RAR, and then the RAR is marked as read-only
again. Similar to MineZone RAD, this method cannot prevent the return-to-libc attack.

Chiueh, et al., report a modest performance degradation of 5-40% for Minezone RAD, and up to 1000%
degradation for the more secure Read-Only RAD [33].

ProPolice [34] is a gcc extension that utilizes a mechanism similar to that in StackGuard, but with
additional features. It adds some protection against Type 2 attacks by reordering the local variables stored
on the stack such that the buffers are right before the canary and hence cannot be used in the same function’s
scope to overwrite the pointers. This tool was used to compile OpenBSD [35] and is part of its distribution.
ProPolice requires recompilation of the source code, and like Stackguard, it modifies the stack contents, so,
programs dependent on the stack structure may no longer work.
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PointGuard [36] is a compiler technique to defend against attacks executed through use of pointers. A
modification to gcc enables pointers to be encrypted with a per-process XOR key while in memory, and to
be decrypted only when they are loaded into the registers. This technique requires recompilation of source
code and in [36] they report that it imposes up to 21% overhead.

3.4 Modifications of the Library

FreeBSD Stack Integrity Patch (Libparanoia): Alexandre Snarski posted a patch to FreeBSD [37] in
1997 to check the integrity of the stack and later improved on the same idea and called it Libparanoia [38].
The patch modifies the insecure libc functions like strcpy() and sprintf() to kill the process if the
destination buffer contains a stack frame.

Baratloo et al. [39–41] proposed two dynamically loadable library methods to protect against buffer overflow
attacks. Neither of these methods require re-compilation unless the program is statically linked. The first
method, Libsafe intercepts all calls to vulnerable library functions, such as strcpy() and strcat(), and
executes their safe versions which implement the same functionality as the original but employ bounds
checking to prevent buffer overflows. This method estimates the upper bound on the size of the buffer to
be the end of the stack frame, so the return address can not be overwritten. Libsafe protects against Type
1 buffer overflow attacks only. Libverify, on the other hand, is a run time implementation of StackGuard,
which inserts function return address verification code at execution time via a binary re-write of the process
memory instead of at compile time. Libverify also protects against only Type 1 buffer overflow attacks.

Baratloo, et al., report an average overhead of 15% for for applications protected by Libsafe, Libverify, and
StackGuard. While Libverify and StackGuard behave similarly, Libsafe is slightly faster since it intercepts
only vulnerable functions, whereas StackGuard’s extra code is placed in the prologue and epilogue of every
function.

FormatGuard [42] is a patch to glibc that provides general protection against format bugs. FormatGuard
uses particular properties of GNU CPP (the C PreProcessor) macro handling of variable arguments to
extract the count of actual arguments. The actual count of arguments is then passed to a safe printf()

wrapper. The wrapper parses the format string to determine how many arguments to expect, and if the
format string calls for more arguments than the actual number of arguments, it raises an intrusion alert
and kills the process. This method fails to protect against calls to printf() when the correct number of
arguments is given but not of the expected types, i.e., if an integer is received when a double is expected.
It also fails if the call to printf() is implemented via a function pointer or if the low level functions of
printf() (e.g., vsprintf()) are called directly or another I/O library is used. FormatGuard imposes 37%
overhead on printf() calls which result in an 1.3% run-time overhead for their set of benchmarks.

3.5 Modifications of the Kernel/OS

The first kernel-based solution, StackGhost [43], is a patch to the OpenBSD 2.8 kernel under the Sun
SPARC architecture. Frantzen and Shuey performed experiments on three methods for protecting the
return address. The first two XOR the return address on the stack with a cookie before writing it on the
stack and then XOR it again with the same cookie before the return address it is popped off the stack. This
method distorts any attack to the return address but does not detect it. Therefore, another method is used
to detect the attacks. In SPARC architecture, the memory is four byte aligned and the least significant (LS)
two bits are always 0s. So, the two bits are set at the function prologue and verified to be set at the epilogue.
If the attacker is not aware of this, they will inject a four byte aligned address in the return address and
therefore the attack will fail. But, once the attacker figures this out, they can set the two LS bits of the
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address that they want to jump to, and then overwrite the return address with the modified address. The
XOR cookie method comes with two flavors. XOR-cookie per kernel and XOR cookie per-process. Both of
these methods (especially per kernel XOR cookie) are easily bypassable since the cookie can be figured out
if the contents of the stack frame can be observed (e.g., using the method in the format string attacks as
described in Section 2.3) and the return addresses are extracted from the program binaries. Frantzen and
Shuey report 17.44% worst-case overhead for the per-kernel XOR cookie and 37.09% worst-case overhead
for the per-process XOR cookie.

To prevent execution of the shellcode on the stack, Solar Designer proposed the Non-Executable User
Stack. This solution, a Linux kernel patch from the Openwall Project [17], however, can be bypassed with
return-to-libc attacks or running the shellcode somewhere in memory other than in the stack, for instance
the heap. To prevent the return-to-libc attacks, this patch also changes the default addresses of the shared
libraries in libc to contain a zero byte. It is difficult to overwrite the return address with a value that
contains a zero byte (null), since a zero byte is a string terminator, and terminates string copying functions.
After a long discussion in Bugtraq [44], Torvalds did not approve including this method in the Linux kernel
because it is not a real solution to buffer overflow attacks and also a non-executable stack causes trampoline
functions [45] and debuggers to fail.

PaX [27] is a kernel patch that includes two protection mechanisms. NOEXEC is a page based mapping
mechanism which does not allow pages that are writable to also be executable. This prevents injection
and execution of code in a process’ address space1. Address Space Layout Randomization (ASLR) is
a probabilistic technique that randomizes the address of the important locations in the process’ address
space. This makes it hard for the attacker to predict the addresses of libc functions (e.g., system), the
function return addresses, the base of the stack and the heap. PaX incurs a small overhead but only at
process startup.

3.6 Hardware Solutions

Independent of and concurrent to our proposal, there have been two recent attempts to provide a hardware
solution.

Xu, et al. [46] proposed two methods for protection of the function return address from being overwritten on
the stack. Split control and data stacks, protects the return address by storing it at the control stack, away
from buffers in the data stack that can be overflowed to overwrite the return address. This approach
can be implemented with either compiler or hardware support. The compiler implementation has up
to 23% overhead in SPECINT benchmarks and 2% to 5% overhead for an ftp server. The hardware
implementation eliminates this overhead, but requires an extra register and change to the instruction set
semantics. The authors assume one page of memory should be enough for every process and do not discuss
memory management of the control stack. This method does not protect against Type 2 buffer overflows
or format string attacks because the control stack is not protected. The second method, Secure Return
Address Stack (SRAS), is a hardware based approach that is implemented on top of the Return Addresss
Stack (RAS). SRAS stores a redundant copy of the function return addresses in the processor to validate the
return addresses on the stack. This method has three versions, Speculative SRAS, Non-Speculative SRAS
and Non-Speculative SRAS with Overflow Handling. Speculative SRAS incurs almost 100% overhead. Non-
Speculative SRAS has fixed stack size and cannot handle deeply nested functions. Non-Speculative SRAS
with overflow handling swaps the contents of the SRAS to the PCB of the process to handle overflows. Xu,
et.al do not discuss context switch overhead and their setjmp/longjmp handling method requires addition
of a special instruction to rewind the SRAS.

Lee et al. [47] also proposed a hardware-based Secure Return Address Stack to protect against attacks

1Write-Xor-Execute method implements the same idea
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on the function return address. Changes are made to the microarchitectural structure of the CPU to keep
a copy of the return addresses for validation. This approach does not consider 1) register port contention
due to validity checks of the return address, 2) issues of cleaning up the SRAS after branch mispredictions,
or 3) program flow changes caused by functions like setjmp() and longjmp(). Its performance tests
use a single-way, in-order-issue processor, which is outdated compared to modern wide, out-of-order-issue
processors.

3.7 Safer C Language Compilers

There are several dialects of C that offer security measures employed in higher level languages such as Java,
while maintaining the low level and efficient aspects of the C programming language. Enforcing type safety,
providing better memory management and array bounds checks are some of the security features employed
in Cyclone [48], Safe C Compiler [49] and CCured [50].

These modified variants of C are not simple drop-in replacements. These language modifications require a
programmer to change portions of the source code, often requiring some sort of indication where protection
should be enabled (otherwise, the normal lack of bounds checking applies for compatibility). The reason for
manual activation of bounds checking is that these projects self-report overheads on the order of 100% in
some instances. Additionally, these suffer from the same drawbacks on legacy binaries as do other Compiler
modifications. Namely, they only protect newly compiled programs and do not protect system kernel,
libraries, or existing binaries without recompilation.

3.8 Summary

Solutions that trade off a high level of security for better performance are eventually bypassed by the
attackers and prove incomplete. On the other hand high-security solutions seriously degrade the system
performance due to the high frequency of integrity checks and high cost of software based memory protection.
An issue that diminishes the feasibility of these tools and methods is their lack of transparency to the
application or to the operating system. Moreover, some earlier methods lack protection against Type 2
attacks. In our evaluation of our hardware-based approach we have chosen to compare against StackGuard
for several reasons. First, it is the approach that is most widely cited. Second, its mechanism for protecting
the return address on the stack is found in the tools ProPolice and Libverify. Third, it is not architecture
specific and is therefore portable, and fourth, it reports little overhead while maintaining security against
the most prevalent type of attack on the return address pointer.
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Chapter 4

SmashGuard: A Hardware Solution

In this section we present a hardware solution that is secure and inherently faster than the existing soft-
ware methods. We elaborate on the complications we face with setjmp() and longjmp(), process context
switches, and deeply-nested function calls, and how we solve them. Finally, we describe our microarchitec-
ture and discuss hardware implementation issues.

4.1 Overview

Our approach, which we call SmashGuard, protects against attacks on return addresses by saving the return
address in a hardware stack added to the CPU. With each function call instruction, the return address and
the stack frame pointer1 are pushed onto the hardware stack. A return instruction pops the most recent
pair of address from the top of the hardware stack and compares it to its return address. If a mismatch is
detected between the two return addresses, then a hardware exception is raised. In the exception handler
the OS may employ a variety of policies based on the desired level of security (e.g., the process may be
killed and a report may be sent to syslog).

This simple functionality is not sufficient to handle the problem of setjmp() and longjmp(). setjmp()

and longjmp() circumvent the last-in first-out ordering of the program stack causing the hardware stack to
become inconsistent with the program stack. As we explain in Section 4.2, we extend the hardware stack’s
functionality to enable it to become consistent again.

In the simplest case (single process and nesting of functions less that the size of the hardware stack), all read
and writes to the hardware stack are done in hardware via the function call and the return instructions, so
there is no instruction that is permitted to read/write directly from/to the hardware stack. Specifically, no
user-level load or store instruction can access the hardware stack. To handle the more complicated cases of
multiple processes requiring context switching, and deeply nested function calls, the hardware stack needs
to be accessible by the Operating System (OS). As we explain in Section 4.3, we solve this problem by
memory-mapping the hardware stack. The user cannot access the hardware stack via the OS either, since
it is protected at the kernel privilege level.

1In the next section we explain why merely storing the return address on the hardware stack is not sufficient.
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   a(){
     b{};
   }

   b(){
     var = setjmp();/* setjmp returns 0 */
     if (var == 0){
       d();
(a)   }
      else {    both setjmp and
      ...       longjmp return here
     }
   }

   d(){
     longjmp();    /* longjmp returns 1 */
   }

ret setjmp
...

...

Setjmp Buffer

longjmp�s frame

d�s frame

b�s frame

a�s frame

Program Stack

RA of longjmp

RA of d

RA of b

RA of a

Hardware Stack

(b)

Hardware Stack

RA of setjmp

RA of b

RA of a

Program Stack

setjmp�s frame

b�s frame

a�s frame

ret setjmp
...

...

Setjmp Buffer

(c)

Figure 4.1: Setjmp/longjmp example. (a) code snippet, (b) program stack and hardware stack just before
longjmp() returns, (c) program stack and hardware stack just before setjmp() returns

4.2 Handling setjmp() and longjmp()

One of the more complicated aspects of any attempt to protect the call stack is considering how to handle
setjmp() and longjmp() functions. Briefly, setjmp() stores the context information for the current stack
frame and execution point into a buffer, and longjmp() causes that environment to be restored. This
allows a program to return quickly to a previous location, effectively short-circuiting any intervening return
instructions. One place this might be used is in a complex search algorithm: the program uses setjmp() to
mark where to return once the item is found, begins calling search functions, and once the target is found
it will longjmp() back to the marked point.

Because longjmp() avoids going through the usual function return sequence, our hardware stack becomes
inconsistent with respect to the program stack. In Figure 4.1(a), we show a code snippet where a() calls
b() which in turn calls setjmp(). As is typical in programs using setjmp() and longjmp(), depending on
setjmp()’s return value var, b() may or may not call d(). d() calls longjmp(). During execution, a()
calls b() and b() calls setjmp(). setjmp() saves a snapshot of b()’s current register state and a copy of
its own return address in a buffer. setjmp() then returns with a return value of 0 causing d() to be called.
d() calls longjmp() which uses setjmp()’s buffer to restore b()’s register state. longjmp() uses the saved
return address in the buffer which is setjmp()’s return address to return to b() with a return value of 1,
allowing b() to return to a().

In Figure 4.1(c), we show the program stack at the instance when setjmp() is about to return. We see that
the hardware stack is consistent with the program stack. We also see that the buffer holds b()’s state and
setjmp()’s return address. In Figure 4.1(b), we show the program stack at the instance when longjmp()

is about to return. At this point, the program stack will collapse down to b()’s frame, and longjmp()

will return to setjmp()’s return address using the buffer. Because the return address is coming from the
buffer and not the program stack, setjmp()’s return address does not exist anywhere – certainly not at the
top, nor anywhere below – in the hardware stack, which tracks only the program stack. If nothing is done,
SmashGuard would compare the hardware-stack top, which is longjmp()’s return address into d(), against
setjmp()’s return address, and a mismatch would result.

Because the relevant return address simply does not exist in the hardware stack, we propose that longjmp()
use2 an indirect-jump (i.e., jump-through-register) instruction to return, rather than use a return instruction.
Because an indirect-jump instruction will not trigger SmashGuard’s check, longjmp() will be allowed to

2This is a library modification
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return without a mismatch. The program stack and hardware stack are not consistent yet: the program
stack holds frames for b() and a(), but the hardware stack holds the return addresses of longjmp(), d(),
b(), and a() (see Figure 4.1 (c)). When b() returns, a mismatch would result.

However, unlike the previous mismatch situation, the required return address (i.e., b()’s return address)
exists in the hardware stack – only not at the top. Therefore, we propose that upon a mismatch SmashGuard
keep popping the hardware stack until either a match occurs, or the bottom of the stack is reached in which
case the mismatch exception is raised. If a return address is modified due to an attack, none of the addresses
on the hardware stack would match and the bottom of the stack will be reached. Therefore, no attack will go
undetected. Because the only way for the bottom of the stack to be reached is due to an attack, SmashGuard
will never raise a false alarm.

There are two more complications remaining. First, if b() is called multiple times before longjmp() is
called, then the hardware stack would hold multiple instances of b()’s return address. In that case, the
popping of the hardware stack would stop at the first instance of b(), which may not be the correct instance.
To identify the correct instance, we propose to store the return address and the stack pointer, instead of
just the return address, in the hardware stack. So calls would push the two values onto the hardware stack,
and returns would check the top of the stack against the return instruction’s return address and the stack
pointer. Using the stack pointer is guaranteed to identify the correct instance because 1) the stack pointer
holds a unique value for each instance, and 2) the stack pointer value is the same when a function call and
the corresponding function return occurs.

Second, because we require longjmp() to return using an indirect-jump instruction and not a return in-
struction, returns from longjmp() are not processed within SmashGuard. Therefore, an attack on the
return address stored in the setjmp() buffer (via some buffer overflow attack that somehow overflows into
the setjmp() buffer) would go undetected. To avoid this problem, we propose that writers of setjmp() and
longjmp() library code protect the return address stored in the buffer using schemes similar to StackGuard
(e.g., place random numbers around the return address and check their integrity before using the return
address in the longjmp()). Because this code is library code and not application code, we retain application
transparency.

Now we explain the solutions proposed by the other approaches described in Section 3 to setjmp() and
longjmp(). Techniques, such as StackGuard, that do not store a copy of the return address stack need not
do anything special for setjmp() and longjmp(). RAD’s solution is to continue to pop return addresses
off of their stored table of return addresses until a match is found. The problem with this approach is that
it is possible that the modified return address value exists somewhere further down on the hardware stack,
causing execution to continue without detecting the problem. As has been pointed out before, failing to
stop execution is no worse than the current situation where no check is being made, but this answer is
unsatisfactory.

The Hardware solution proposed by Lee, et al. [47] lists four ways to handle setjmp() and longjmp(),
none of which retain both security and the functionality of the code. On the two extremes the authors
suggest either prohibiting setjmp()/longjmp() or disabling the hardware stack protection for programs
that contain setjmp()/longjmp(). An intermediate solution, is to introduce new user-mode (i.e., non-
privilege mode) instructions sras pop and sras psh (SRAS is the name of their proposed hardware solution)
to make the hardware stack consistent after a longjmp(). They propose injecting these instructions either
at compile time or at runtime. However, a malicious user could use the instructions to tamper with the
hardware stack itself, compromising security.
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4.3 Handling Deeply-Nested Function Calls and Process Context
Switches

Because our solution is the same for deeply-nested calls and context switches, we describe these issues
together. The hardware stack may fill up for programs with deeply-nested function calls. A 2-KB stack
holds 512 32-bit addresses (e.g., x86) or 256 64-bit addresses (e.g., Alpha). To handle nested function calls
deeper than 128 (256) smashguard raises a hardware-stack-overflow exception, which copies the contents
of the hardware stack to the program’s Process Control Block (PCB) where it is saved at context switch.
The PCB includes a stack of stacks and every time a stack is full, it is appended to the previous full stack.
Another exception, hardware-stack-underflow, will be raised when the hardware stack is empty to copy in
the last saved full-stack from the PCB. These exceptions are not a performance concern because we expect
them to be infrequent. Indeed, in our experiments with the SPEC2000 benchmarks, our 2-KB stack was
sufficiently large such that no overflows occurred.

A context switch requires saving process state, requiring that we 1) copy out the hardware stack of the
running process either to the PCB or a memory location pointed by a special pointer in the PCB, and 2)
copy in the hardware stack of the scheduled process. To handle both the above scenarios without adding any
special instructions to the instruction set, we employ memory mapping (similar to memory-mapped I/O),
so that regular load or store instructions can be used to read and write the stack in these scenarios. We
map a part of the address space to the hardware stack.A regular load or store access to this part translates
to a read or write access to the hardware stack, much as memory-mapped I/O devices are read and written.
Recall that I/O devices are protected from direct access by user-level code via virtual memory protection.
Similarly, direct access to the hardware stack is forbidden by virtual memory protection. Thus, only the
OS can read or write the memory-mapped stack, and the OS does so to handle both scenarios. Because the
saving and retrieving of the hardware stack from memory is handled by the kernel our method is secure.

Although SmashGuard increases the state that needs to be saved and restored at context switches, we
expect this overhead to be small. In typical interactive desktop environments, modern operating systems
target about 1% overhead for context switches due to time slice expiration. For a 10-20 milliseconds time
slice, the context switch overhead (i.e., time spent in the OS to switch from one process to another) is
about 100-200 microseconds. Copying our 4-KB (512 64-bit words) hardware stack will require about 1000
instructions (a pair of load and store instructions for each word), which may take around 2000 cycles
(assuming a conservative 0.5 instructions per cycle). At 1 GHz, this copy adds 2 microseconds to the
context switch time of 100-200 microseconds, or about 1-2% of context switch time. Given that time slices
are 10-20 milliseconds, the copying adds about 0.01-0.02% overhead to wall clock time. In more context-
switch-intensive environments (e.g., interrupt-intensive embedded systems), the copying overhead will be
higher.

4.4 Implementation

In this section, we describe three implementation schemes that allow different trade-offs between imple-
mentation difficulty and performance. We explain our implementations in terms of an Alpha-like RISC
architecture that places the return address of a call instruction in a link register. This link register may be
either an implicit register that is hard-coded in the instruction set, or a register explicitly-specified in the
call instruction. The return instruction uses a return address register – either the implicit register or an
explicitly-specified register to return.

SmashGuard modifies call instructions to push the link register and the stack pointer register onto the
hardware stack. Recall that both are needed to accommodate setjmp()/longjmp() (see Section 4.2).
Return instructions pop off the hardware stack and check the return register and the stack pointer against
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the popped values.

Because modern processors execute instructions out of program order and speculatively under branch pre-
diction, call and return instructions may be executed under misspeculation and out of program order.
Consequently, pushing on and popping off the hardware stack at the time of execution of call and return
instructions is not reliable. Doing so would require that we clean up the hardware stack on mispredictions.
To avoid this complication, we push on and pop off the hardware stack when call and return instructions
commit, which occurs in program order and after all outstanding speculations are confirmed.

However, there is one main difficulty: call and return instructions do not carry the needed register values
– the link register and the return address register – with them to the commit point. The link register is
written to the register file when the call instruction executes, and the return address register value is used
by the return instruction when it executes, well before commit. Certainly the instructions do not carry the
stack pointer to the commit point. There are two options: 1) obtain the register values from the pipeline
during instruction execution, or 2) obtain the values from the register file at instruction commit.

For the first option, we use a table, called the return address table (RAT), into which call and return
instructions place the register values. The values are read from the RAT upon instruction commit and
pushed on the hardware stack, or compared against the top of the stack. To avoid complications in matching
instructions to their RAT values, we make the RAT as large as the active list (or the reorder buffer, which
is used to hold all in-flight instructions until commit), so that instructions can easily find their register
values simply by using their active list pointers. Because the RAT is accessed using the active list pointers,
misprediction – rollbacks of the active list – automatically roll back the RAT. This advantage does not
exist if we had used the hardware stack itself to hold speculative values, because rolling back the active list,
which is a queue, is not similar to rolling back the hardware stack, which is a stack.

The only issue now is that call and return instructions need to read the stack pointer register value (from
the register file or bypass paths), an action that is not taken in conventional pipelines. This extra read,
however, is not a problem because calls and returns read at most one source operand (a call-through-register
reads the call target from a register), implying the stack pointer can be read in place of the non-existent
second source operand. The link register value is computed by calls and can be pulled off from wherever it
is computed (e.g., the execute stage).

Because the RAT is invisible to the software, like the hardware stack, this scheme is secure. Because the
number of in-flight instructions is not large (e.g., 300 instructions) and because call and return instructions
are relatively infrequent, the RAT need be neither large (e.g., a 2-KB RAT would suffice) nor support
high bandwidth. Because this option results in virtually no performance degradation, we call this scheme
No-Stall.

If the RAT does not fit the constraints of a specific pipeline implementation, designers may pursue the
second option of reading the values from the register file. This option raises two issues: 1) because of
register renaming, we cannot access the physical register file with the architectural register specifiers, and
2) the register file needs to be accessed by all committing call and return instructions, which may contend
with instructions in the register read stage of the pipeline.

We address each of these issues in turn. Call and return instructions have to carry the required physical
register specifiers to the commit point. It would seem that carrying the required values themselves instead
of the specifiers is a better option. However, there are two advantages with the specifiers: 1) the specifiers
are smaller than the values (e.g., 8-bits versus 64-bits), and 2) in modern pipelines, instructions already
carry the previous physical register specifier mapping the architectural destination register to the commit
point, so that the previous physical register may be freed. Therefore, the wires and control circuitry needed
to carry specifiers already exist; we simply need one additional specifier to be carried.

The only remaining complication is register port contention. Because adding extra register file ports is
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expensive, and because call and return instructions are not frequent enough to cause significant contention,
we propose two schemes to handle contention: a conservative scheme called Complete-Stall and a more
aggressive scheme called Partial-Stall. In the Complete-Stall scheme, we completely stall issue in cycles
where a call or a return instruction commits. The rationale is that it may be hard to design a select logic
that accounts for register port requirements of committing call and return instructions, in addition to the
usual resource requirements of instructions waiting to be selected. The select logic is usually on the critical
path of the clock, and such additional requirements may impact clock speed. In the Partial-Stall scheme,
the select logic stalls only those instructions as are needed to free up the requisite number of ports for the
committing calls and returns.

4.5 Implementation Cost

SmashGuard’s implementation cost is minimal. The main component of the cost is the hardware stack in
the processor to hold function return addresses. Considering that modern microprocessors employ on-chip
level one (L1) caches of sizes 32-64 KB, and on-chip L2 caches exceeding 1 MB, the 1 KB stack adds minimal
overhead (less than one-tenth of one percent) to the chip.

Adding the stack to the next implementation of an instruction set (e.g., Pentium III and Pentium IV are
both implementations of the x86 instruction set) does not present any difficulties. It is common practice
for newer implementations to incorporate optimizations for better performance. Indeed, such optimizations
often involve employing tables which are similar to SmashGuard’s hardware stack.

When introducing new hardware, a key cost factor to avoid is the introduction of new instructions to
the instruction set. New instructions imply an implicit cost in future implementations that must support
the new instructions (in their original form) for compatibility reasons. Because SmashGuard introduces a
hardware stack, we have to ensure that the stack does not imply new instructions. If the hardware stack
were completely invisible to software (e.g., the hardware caches are usually invisible to the user-level code,
unless the code optimizes for cache performance), then the stack will not require new instructions.

In our approach the hardware stack is invisible to software except for context switches and when the call
depth exceeds the stack size. In the later case, an exception is raised and the exception handler copies the
stack to locations in memory owned by the OS.

4.6 Issues Raised by Multithreading

Some modern processors implement Simultaneous MultiThreading (SMT) [51] which simultaneously exe-
cutes multiple threads on a single pipeline. Multiple threads sharing a single hardware stack in SmashGuard
may make the effective size of the stack too small. Because SMT already provides as many copies of certain
hardware resources (e.g., rename tables, load/store queue, active list) as the number of threads, Smash-
Guard’s hardware stack can also be replicated. Second, OS-visible multithreading does not cause any
problems for SmashGuard because the threads are switched in and out by the OS and the hardware stack
can be saved and restored as part of the context switch. Third, process migration in multiprocessor systems
does not cause any problems. Conventional systems explicitly migrate some of the process state such as
register and TLB contents, SmashGuard’s hardware stack can also be migrated explicitly.

However, user-level multithreading is problematic for SmashGuard because multiple user-level threads would
share the hardware stack, but call and returns from the threads would interleave in arbitrary order, and
not LIFO. Because user-level threads do not go through the OS for invocation, suspension and resumption,
OS-driven context switch cannot be used to share the hardware stack among the threads. The option of
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providing a large number of stacks in hardware is not attractive either because the number of stacks needed
would be large (e.g., 256) to avoid restricting user-level threading. One option is to allow threads the same
hardware stack by (statically or dynamically) partitioning the stack and accessing the stack based on a thread
identifier (id). The thread id is maintained by the thread library in a register and the thread id allows each
thread to access its part of the hardware stack. Any overflow or underflow would be handled as before.
Another option is to disable SmashGuard and use software-based solutions for user-level multithreaded
code. Finally, certain synchronization primitives such as coroutines may be difficult to accommodate in
SmashGuard. Coroutine calls may be done in one thread and returns in another thread, and it may be hard
to synchronize the hardware stacks of the two threads. Here again, an option is to disable SmashGuard and
use software-based solutions for coroutine-based code. In both of these cases recompilation is not an issue
because the user code is available.
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Chapter 5

Experiments and Results

In this section, we evaluate the performance of SmashGuard and StackGuard, a software based protec-
tion mechanism, on a common execution-driven simulation infrastructure for a modern, high-performance
processor.

Processor 4-way issue, 128-entry window, 64-entry

load/store queue (10 cycle branch penalty)

Branch 8K/8K/8K hybrid, 128-entry RAS,

Prediction 4-way 8K BTB

Caches 64K 2-way 2-cycle I/D L1, 2MB 8-way

14-cycle L2 both lockup free and pipelined

Main Infinite capacity, 80 cycle latency

Memory split transaction 32-byte wide bus

Hardware 512-entry Hardware Stack

Stack

Table 5.1: Hardware Parameters

5.1 Methodology

We modified the SimpleScalar-3.0 simulator [52] to model two of our three schemes of SmashGuard – Partial-
Stall and Complete-Stall. We did not implement No-Stall because it incurs almost no performance overhead.
Table 5.1 shows the base system configuration parameters used throughout the experiments, unless specified
otherwise. We simulate both 4- and 8-way out-of-order issue superscalar processors augmented with a 512-
entry hardware stack for SmashGuard. We modified gcc-3.0.3 to port StackGuard to the Alpha architecture.
The ported version of StackGuard modifies the prologue and epilogue code of the compiled functions to
include the terminating canary (see Section 3.3). In Figure 5.1 we show the eight extra instructions inserted
by our StackGuard patch. The prologue code places the terminating canary (0x000aff0d) on the program
stack, and the epilogue code loads the canary from the stack and compares it to the original. If there is
mismatch, the function attack handler() is called.

We compiled the benchmarks on an Alpha machine running Tru64 using the original gcc and the StackGuard
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Call Freq Call IPC IPC

per 103 inst Depth 4way 8way

Integer

bzip 4.24 12 1.9 2.1

crafty 6.89 32 1.8 2.2

gap 3.37 77 2.0 2.5

gcc 2.41 61 1.7 1.8

gzip 3.34 12 1.9 2.1

mcf 6.06 22 0.7 0.7

parser 14.08 238 1.7 1.8

perlbmk 9.71 65 1.4 1.6

twolf 8.13 17 1.5 1.7

vortex 13.33 31 1.9 2.3

vpr 16.67 18 2.2 2.8

FP

ammp 4.83 17 2.2 2.5

applu ∼0 13 2.6 3.1

apsi 2.11 20 1.9 1.9

art 0.34 12 1.6 1.7

mesa 7.35 15 2.3 2.9

mgrid ∼0 16 2.5 2.7

swim ∼0 13 2.8 3.8

wupwise 8.33 14 2.0 2.3

Table 5.2: Instructions per call, maximum call depth, and base IPCs for 4-way and 8-way issue widths

port. The original gcc’s binaries are used by the SmashGuard runs. Because the StackGuard port to
handle C libraries is not available, we compiled only the benchmark code with the StackGuard port and
used the standard C libraries. Accordingly, our simulator samples performance only in the application
functions and not the library functions. We ran the SPEC2000 benchmarks shown in Table 5.2. We used
f2c to covert fortran-77 benchmarks (applu, apsi, equake, mgrid, sixtrack, swim, and wupwise) to C. We
did not simulate Fortran-90 (facerec, fma3d, galgel, and lucas) and C++ (eon) benchmarks as doing so
would require implementing StackGuard in Fortran-90 and C++ compilers. While the total number of
instructions executed by SmashGuard and StackGuard are different, the number of call/returns are the
same in SmashGuard and StackGuard. Therefore, we ran each benchmark for the same number of call
instructions in each case for fair comparison. We skipped 20 million calls and ran 10 million calls for all
the integer programs (bzip, crafty, gap, gcc, mcf, parser, perlbmk, twolf, vortex, and vpr) and for three
floating-point programs (ammp, mesa, and wupwise). The rest of the floating-point programs have such
low call frequency that we had to simulate fewer calls to avoid inordinately extending our simulation time.
We skipped 1 and 0.5 million calls and ran 1 and 0.5 million calls for apsi and art, respectively. Programs
applu, mgrid, and swim make virtually no application calls. We do not show results for equake and sixtrack
because they make only library calls.
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fucntion entry:

<old prologue>

ldah $1, 11 #move canary into reg

lda $1, -243($1)

stq $1, 0($30)

<old prologue>

...

<function body>

...

ldq $1, 0($30) #load canary from stack

ldah $2, 11 #move canary into reg

lda $2, -243($2)

cmpeq $1, $2, $3 #compare

bne $3, $Label

call $26, attack_handler

$Label:

<old prologue>

ret

Figure 5.1: StackGuard’s extra instructions

5.2 Functionality Results

To verify that our hardware modifications can actually detect changes in the program return address, we
created a binary for the Alpha that overwrites one of its own local buffers and executed it in the simulator.
We were limited to self-attacking code because SimpleScalar only supports single process execution. Our
hardware modification was able to detect that the return address value being pulled from the stack did not
match the value stored in the hardware stack.

5.3 Performance Results

In this section, we compare SmashGuard and StackGuard to a conventional superscalar with no support for
buffer overflow detection. Figure 5.2 and Figure 5.3 show our results for issue widths of 4 and 8, respectively.
In both graphs, the Y-axis gives the percent slowdown with respect to the base superscalar processor of
equal issue width, and the X-axis shows our benchmarks starting on the left with the integer programs bzip
through vpr, followed by the average for the integer programs, the floating-point programs ammp through
wupwise, followed by the average for the floating-point programs. The left bars show SmashGuard using
the Partial-Stall scheme, the middle bars show SmashGuard using the Complete-Stall scheme and the right
bars show StackGuard. The figures do not show the No-Stall scheme because it does not incur any more
stalls than the base superscalar (i.e., No-Stall has virtually zero percent degradation).

A striking trend in both Figure 5.2 (4-way issue) and Figure 5.3 (8-way issue) is that the integer programs
incur more performance degradation than floating-point programs, which incur little degradation. If a
program’s call frequency is low, then both SmashGuard’s and StackGuard’s overhead are incurred less
frequently. This trend is corroborated by Table 5.2, where we see that the integer programs’ call frequencies
are generally higher than those of the floating-point programs. The exceptions are mesa and wupwise
which have modestly high call frequencies. Because these programs have high instruction-level-parallelism
indicated by their high IPC (instructions per cycle), SmashGuard’s overhead of stalled issue is hidden by
the parallelism. Because the floating-point programs’ degradations are negligible, we do not discuss them
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Figure 5.2: Results for 4-way issue superscalar

Figure 5.3: Results for 8-way issue superscalar

further.

Focusing on the SmashGuard numbers (left and middle bars), we see two trends. First, as expected,
the Partial-Stall scheme (left bar) performs better than the Complete-Stall scheme (middle bar), on both
4-way issue (Figure 5.2) and 8-way issue (Figure 5.3) processors. With 4-way issue, Partial-Stall and
Complete-Stall incur 0.5% and 2.4% average degradation, respectively, for the integer programs. Partial-
Stall’s worst-case degradation is 1.8% for vpr and has less than 1% degradation for the rest of the programs.
Complete-Stall, on the other hand, incurs more than 4% degradation for mcf, parser, vortex, and vpr. The
relatively large degradations are not surprising because these programs have not only high call frequency
leading to high overhead, but also low IPC with less ability to hide the overhead (Table 5.2).

As we increase the issue width from 4 to 8, Partial-Stall incurs almost no degradation while Complete-Stall
still incurs 1.2% average degradation. Because there are more free issue slots in a 8-way issue processor
than a 4-way issue processor, this allows both schemes’ overhead to be hidden.

Now, we focus on the StackGuard numbers (right bar). We see that StackGuard’s average degradation is
worse than that of Partial-Stall, and comparable to that of Complete-Stall on both 4-way issue and 8-way
issue processors. StackGuard incurs a 2.8% and 1.8% average degradation on 4-way issue and 8-way issue
processors, respectively. However, for perlbmk, vortex and vpr, StackGuard incurs more than 8% and 6%
degradation on 4-way issue and 8-way issue processor, respectively. High call frequency and low IPC of these
programs have the same negative effect on StackGuard’s performance as SmashGuard’s performance. Like
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SmashGuard, StackGuard incurs less degradation when the issue width was increased from 4 to 8. On the
8-way issue processor, apsi and wupwise unexpectedly improve in performance (i.e., negative degradation)
with StackGuard. This improvement is the result of a pathological interaction between StackGuard’s extra
instructions and the branch predictor, causing an accidental improvement in the prediction accuracy.

Finally, the call depths listed in Table 5.2 show that the programs do not exceed the depth of 238 (parser),
indicating that a 512-entry hardware stack is sufficient to avoid most stack overflow exceptions in Smash-
Guard.
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Chapter 6

Conclusions and Future Work

This paper has proposed a novel microarchitectural support to protect against attacks that overwrite the
return address on the process stack to redirect execution. We have provided a hardware stack that securely
handles both Type 1 (buffer overflows) and Type 2 (attacks through a pointer) attacks on the return address.
The key contributions of this paper are:

Complete Solution: We have designed a complete solution, which handles setjmp and longjmp as part of
the hardware solution, and handles hardware stack overflow/underflow and process context switches
with a small modification to the OS.

Trade-offs: We have proposed three implementation schemes that allow different trade-offs between im-
plementation difficulty and performance.

Detailed Performance Analysis: We have performed a detailed performance analysis comparing the
most-frequently applied software solution, StackGuard, to SmashGuard on a common simulator for a
high-performance processor.

Our best-performing implementation, No-Stall, incurs virtually no performance degradation but has the
small implementation cost of a 2-KB table. We compared the other two implementations (Complete-
Stall and Partial-Stall) to StackGuard. Our experiments show that StackGuard performs comparably to
Complete-Stall but StackGuard is less robust than Partial-Stall. For an 8-issue processor, while StackGuard
incurs only slightly less average degradation than Partial-Stall, StackGuard’s worst-case degradation is 8%
whereas Partial-Stall incurs less than 0.5%. Moreover, StackGuard requires application recompilation and
does not protect against Type 2 attacks.

With every passing day, the vulnerability of systems connected to the Internet increases. Attacks are
increasingly automated, attack tools are much more sophisticated, and there have been attacks on the
critical infrastructure of the Internet. SmashGuard provides a robust solution to one of the most prevalent
attacks of today.
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