CS 151
Heaps & Heap sort
Announcements

Prelab 7 is due now.

Lab 7 due on Sunday night.

CS department winter term organizational meeting:
 Tuesday Nov 6, 4:30pm in King 237
A **priority queue** stores a collection of comparable elements such that the highest priority element is “at the front”. Operations are

- `insert()` aka `offer` — add element to the queue
- `removeMin()` aka `poll` — remove the highest priority element
- `findMin()` aka `peek` — return but do not remove the highest priority element
- `size()`
- `isEmpty()`
- `traverse()` / `iterate()`

We implement the priority queue using a **binary heap**:

- a complete binary tree (a binary tree where each level is completely filled except for possibly the last, which is filled from left-to-right.)
- with the **heap order property**:
 - for all nodes \(n \), the value/key of \(n \) is \(\leq \) value/key of its children

The nodes of a heap are stored in an array in level-order, starting at index 1.

We showed that `size()`, `isEmpty()`, `findMin()` is \(O(1) \); `insert`, `remove` \(O(\log n) \)
percolateDown(index) -- move the elt at index index down to the correct spot
 • loop
 • if index is a leaf, return (it’s smaller than its non-existent children)
 • else, let minChild = index of smaller of index’s children (or, child)
 • if data[minChild] < data[index] then we’re out of heap order
 • swap the two entries
 • set index = minChild
 • else, return (we’re done.)

RT: if percolate down to the bottom, get O(log n). Note that percolate(index) is actually O(height of the tree rooted at index).
Consider trying to construct a heap out of an unordered array.

- `heapify(array)` - make array into a heap (enforce the heap order prop)

How could you do this?

Idea #1:
- construct a new empty temporary array, view it as a heap
- for each element in given array, add it to our new heap
- at the end, new heap contains all of the array, but with heap order prop

Problem is... takes $O(n \log n)$ time. (Each of the n inserts takes $O(\log n)$.)

Want a way to heapify in $O(n)$ time.
Consider trying to construct a heap out of an unordered array.
- `heapify(array)` – make array into a heap (enforce the heap order prop)

How could you do this?

idea #2:
- view given array as a complete binary tree without the heap order prop
- start at the leaves, move up the tree level-by-level
 - call `percolateDown(i)` for each node in the tree
 - i.e. enforce the heap order prop node-by-node, going up the tree

Ex. array 92, 47, 21, 20, 12, 45, 63, 61, 17, 55, 37, 25, 64, 83, 73

Since `percolateDown(i)` takes $O(\text{height}(i))$, the RT of `heapify` is:
$$\sum_{\text{nodes } n \in T} O(\text{height}(n)) \in O(n) \quad \text{(we’ll prove this by induction later)}$$

Bottom Line: If you need to construct a new heap out of n elements, use `percolateDown` on every node, starting from the leaves!
Heapsort

Note that heapify gives us a new sorting algorithm, called heapsort:

- heapsort(array):
 - call heapify(array)
 - removeMin n times to repeatedly get the next min element
- heapify is $O(n)$, n removeMins are $O(n \log n)$, so heapsort is $O(n \log n)$
A complete binary tree T is either

- an empty tree, or
- a root node r with left and right complete binary trees L and R such that if L is not perfect (it’s “missing” some leaves) then $h(R)=h(L)-1$ (o.w. $h(R)=h(L)$)

For any complete binary tree T, let $P(T)$ be the boolean property that $\sum_{v \in T} h(v) \in O(n(T))$, where $h(v)$ is the height of node v.

(Remember, you can think of $P(T)$ as a boolean function that sums up the heights of all the nodes in T then checks that it is at most $\text{numNodes}(T)$-ish.)

We will show that $P(T)$ is true for all complete binary trees T “by structural induction” on T.

Step 0: Play around and convince yourself $P(T)$ is true for some specific T’s.
A complete binary tree T is either
- an empty tree, or
- a root node r with left and right complete binary trees L and R such that if L is not perfect (it’s “missing” some leaves) then $h(R)=h(L)-1$ (o.w. $h(R)=h(L)$).

For any complete binary tree T, let $P(T)$ be the boolean property that $\sum_{\text{nodes } v \in T} h(v) \in O(n(T))$, where $h(v)$ is the height of node v.

Step 1: Show that $P(T)$ is true when T is your base case.

base case: T is an empty tree

We want to show (WTS) that $P(T)$ is true when T is an empty tree, i.e. that $\sum_{\text{nodes } v \in T} h(v) \in O(n(T))$ holds when T is an empty tree.

When T is empty, there are no nodes in T so $n(T)=0$ and the sum is empty:
$$\sum_{\text{nodes } v \in T} h(v) = 0 \in O(n(T)) \quad \text{because there are no nodes to sum over}$$
$$\because n(T) = 0.$$
A complete binary tree T is either
• an empty tree, or
• a root node r with left and right complete binary trees L and R such that if
 L is not perfect (it’s “missing” some leaves) then $h(R)=h(L)-1$ (o.w. $h(R)=h(L)$)

For any complete binary tree T, let $P(T)$ be the boolean property that
$$\sum_{\text{nodes } v \in T} h(v) \in O(n(T)),$$
where $h(v)$ is the height of node v.

Step 2: Show that $P(T)$ is true when T is your recursive case.

recursive case: T is a root node r with L and R complete binary trees. Suppose hypothetically, that $P(L)$ and $P(R)$ are true, i.e. that
$$\sum_{\text{nodes } v \in L} h(v) \in O(n(L)) \quad \text{and} \quad \sum_{\text{nodes } v \in R} h(v) \in O(n(R))$$

This is our **induction hypothesis**

We want to use these two hypothetical assumptions and the definition of T to show $P(T)$ is true, i.e. that $$\sum_{\text{nodes } v \in T} h(v) \in O(n(T))$$ is always true.
Structural Induction Example

- Algebraically connect \(\sum_{v \in T} h(v) \) to \(\sum_{v \in L} h(v) \), \(\sum_{v \in R} h(v) \)

- Algebraically connect \(n(T) \) to \(n(L), n(R) \): \(n(T) = 1 + n(L) + n(R) \)

Use these facts along with our IH \(\sum_{v \in L} h(v) \in O(n(L)), \sum_{v \in R} h(v) \in O(n(R)) \)

and the definition of \(T \) to show \(P(T) \) is true, ie. that \(\sum_{v \in T} h(v) \in O(n(T)) \) is true.

\[
\sum_{v \in T} h(v) = h(r) + \sum_{v \in L} h(v) + \sum_{v \in R} h(v)
\]

\(\text{b/c T’s nodes are r, L, & R} \)

\[
= h(r) + O(n(L)) + O(n(R))
\]

\(\text{by the induction hypothesis} \)

\[
= h(r) + O(n(T))
\]

\(\text{b/c } n(L) + n(R) = n(T) - 1 \)

\[
\in O(n(T))
\]

\(\text{b/c } h(r) \leq n(T) \)

Thus \(P(T) \) is true for all \(T \) by structural induction on \(T \).