Announcements

- Prelab 9 is due now
- Test #2 graded & returned today
 - Generally very well done. Good job!
 - Test #2 graded & returned today

Graph Implementations

Graph Definitions

- A graph $G = (V, E)$ is a set of vertices V and a set of edges E.
- Directed graph has directed edges $e = (u, v)$.
- Undirected graphs have unordered edges $e = (u, v)$.

Graph Operations

- $size()$: return the number of nodes in the graph
- $isEmpty()$: return whether there are 0 nodes in the graph
- $isEdge(Vertex v, Vertex w)$: return true if (v, w) is an edge
- $areConnected(Vertex v, Vertex w)$: return whether v, w are connected
- $shortestPath(Vertex v, Vertex w)$: return length of the shortest v-w path
- $isConnected()$: return whether graph is one connected component
- $numComponents()$: return the number of connected components
- $findConnComponent(Vertex v)$: return vertices in v's connected component
- $getAvgDegree()$: determine the average degree of all vertices
- $findSpanningTree()$: find the fewest number of edges of G to keep so that G is still connected

Graph Operations

- $traverse()$: traverse through nodes in an ordered fashion
- $isStronglyConnected()$: determine the strongest degree of all vertices
- $findShortestPath()$: find the shortest v-w path

Summary of Definitions

- A graph is connected if there is a path between every pair of vertices.
- A graph is strongly connected if there is a directed path between every pair of vertices.
- A graph is weakly connected if there is a directed path between every pair of vertices.
- The degree of a node is the number of edges incident to the node.
- The neighborhood of a node is a set of the nodes adjacent to the node.
- A connected component of a graph is a subset of the nodes such that:
 - Every node in the subset has a path to every other node in the subset.
 - The subset is not part of some larger set with the connected property.

Graph Summary

- A graph is connected.
- A graph is strongly connected if there is a directed path between every pair of vertices.
- The degree of a node is the number of edges incident to the node.
- The neighborhood of a node is a set of the nodes adjacent to the node.
- A connected component of a graph is a subset of the nodes such that:
 - Every node in the subset has a path to every other node in the subset.
 - The subset is not part of some larger set with the connected property.
- A graph is connected if there is a path between every pair of vertices.
- A graph is strongly connected if there is a directed path between every pair of vertices.
- A graph is weakly connected if there is a directed path between every pair of vertices.
- The degree of a node is the number of edges incident to the node.
- The neighborhood of a node is a set of the nodes adjacent to the node.
- A connected component of a graph is a subset of the nodes such that:
Facts About Graphs

Proof. Every edge \(e = (u, v) \) in \(G \) is counted twice in the sum of the degrees.

Fact 1: For any graph \(G = (V, E) \),

\[
\sum_{e \in E} \deg(e) = \sum_{v \in V} \deg(v) = 2|E|.
\]

Fact 2: In a directed graph,

\[
\sum_{v \in V} \text{indeg}(v) = \sum_{v \in V} \text{outdeg}(v)
\]

Proof. Every edge \(e = (u, v) \) adds 1 to in-degree sum and 1 to out-degree sum.

Fact 3: In a graph \(G \) with \(n \) nodes and \(m \) edges \((n = |V|, m = |E|)\),

\[
m \in \Theta(n^2)
\]

Proof. At most you can have 1 edge between every pair of vertices.

There are \(\binom{n}{2} \) ways to pick distinct pairs of vertices out of \(n \) of them.

Thus, \(\binom{n}{2} \in \Theta(n^2) \).

A graph is

dense

if

\[
m \in \Theta(n^2)
\]

and

sparse

if

\[
m \in O(n)
\]

Graph Implementations

1. adjacency matrix

- A graph is an \(n \times n \) matrix (2D array) of edges
- Or, if you have edge costs:

\[
e[u][v] = \begin{cases} c & \text{if } (u, v) \in E \\ \infty & \text{if } (u, v) \not\in E \end{cases}
\]

2. adjacency list

- A graph is a list of vertices
- Each vertex keeps track of its incident edges (equivalently, its adjacent nodes)

Graph class with adjacency matrix:

- \(\text{int[][] edges} \)
- \(\text{int numNodes} \)

- \(\text{int size() -- return numNodes (or edges.length)} \)
 - RT: \(O(1) \)
- \(\text{bool isEmpty() -- return size() == 0} \)
 - RT: \(O(1) \)
- \(\text{bool isEdge(Vertex u, Vertex v)} \)
 - index\text{U}, index\text{V} = u and v’s index in graph, resp.
 - return (edges\[index\text{U}\][index\text{V}] != 0)
 - RT: \(O(n) \)
 + time to find \(u \)’s index
- \(\text{int getDegree(Vertex u)} \)
 - index\text{U} = u’s index in the graph
 - deg\text{U} = sum of num. of non-zero entries in index\text{U} row
 - return deg\text{U}
 - RT: \(O(n) \)
 + time to find \(u \)’s index
- \(\text{bool addEdge(Vertex u, Vertex v, [int cost])} \)
 - index\text{U}, index\text{V} = u and v’s index in graph, resp.
 - set edges\[index\text{U}\][index\text{V}] = 1 or cost
 - if graph undir, set edges\[index\text{V}\][index\text{U}] = 1 or cost
 - RT: \(O(1) \)
 + time to find \(u \)’s index
 + time to find \(u \)’s index

Graph class with adjacency list:

- A graph is a list of vertices
- Each vertex keeps track of its incident edges (equiv., its adjacent nodes)

\[
\begin{array}{c|c}
\text{A} & \{A, B\} \\
\hline
\text{B} & \{A, B\} \\
\text{C} & \{B, C\} \\
\text{D} & \{B, D\} \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{A} & \{A, B\} \\
\hline
\text{B} & \{B, C\} \\
\text{C} & \{C, D\} \\
\text{D} & \{D, B\} \\
\end{array}
\]

Graph class with adjacency matrix:

Graph class with adjacency matrix:

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 1 \\
C & 0 & 1 & 0 & 1 \\
D & 0 & 1 & 1 & 0 \\
\end{array}
\]

Graph class with adjacency list:

\[
\begin{array}{c|c}
\text{A} & \{A, B\} \\
\hline
\text{B} & \{B, C\} \\
\text{C} & \{C, D\} \\
\text{D} & \{D, B\} \\
\end{array}
\]

Graph class with adjacency matrix:

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 1 \\
C & 0 & 1 & 0 & 1 \\
D & 0 & 1 & 1 & 0 \\
\end{array}
\]

Graph class with adjacency list:

\[
\begin{array}{c|c}
\text{A} & \{A, B\} \\
\hline
\text{B} & \{B, C\} \\
\text{C} & \{C, D\} \\
\text{D} & \{D, B\} \\
\end{array}
\]

Graph class with adjacency matrix:

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 1 \\
C & 0 & 1 & 0 & 1 \\
D & 0 & 1 & 1 & 0 \\
\end{array}
\]

Graph class with adjacency list:

\[
\begin{array}{c|c}
\text{A} & \{A, B\} \\
\hline
\text{B} & \{B, C\} \\
\text{C} & \{C, D\} \\
\text{D} & \{D, B\} \\
\end{array}
\]
Graph Implementations

Graph class with adjacency list:

- `Vertex` class:
 - `LL<Edge>` adj
 - `String` name

- `Edge` class:
 - `Vertex` start
 - `Vertex` dest
 - `int`/`double` cost

 - `Edge(Vertex dest, int cost)`
 - `this.dest = dest`
 - `this.cost = cost`

 - `boolean equals(Object o)`
 - `return ((Edge)o).dest.equals(this.dest)`

Graph with adjacency list:

- `Graph` class:
 - `LL<Vertex>` nodes
 - `int` numNodes

- `Vertex` class:
 - `LL<Edge>` adj
 - `String` name

 // may add more class members such as prev, dist, scratch

 - `Vertex(String name)`
 - `this.name = name`

 - `int degree()`
 - `return adj.size()`

 - `addEdge(Vertex w, int cost)`
 - `adj.add(new Edge(w, cost))`

 - `boolean equals(Object o)`
 - `return ((Vertex)o).name.equals(this.name)`

 - `boolean isNbr(Vertex w)`
 - `return adj.contains(new Edge(w))`

 - `LL<Vertex> nbrs()`
 - `for each e in adj, add e.dest to new LL and return it`

Graph with adjacency list:

- `Graph` class:
 - `HashMap<String,Vertex> vMap`
 - `int` numNodes

 - `size()` -- return numNodes (or vMap.size())
 - `isEmpty()` -- return (size() == 0)

 - `private Vertex getVertex(String vName)`
 - `Vertex v = vMap.get(vName)`
 - `if(v == null) vMap.put(vName, new Vertex(vName))`
 - `return v`

 - `getDegree(String vName)`
 - `Vertex v = vMap.get(vName)`
 - `if(v == null) throw exception`
 - `return v.degree()`

• but user doesn’t usually refer to vertices as Objects—they prefer names
• how can we store vertices by their names & still have quick access?
 Use a HashMap of <String,Vertex> pairs!
Graph Implementations

Graph with adjacency list:

Graph class:

- `HashMap<String, Vertex> vMap`
- `int numNodes`

Method:

- `addEdge(String uName, String vName, int cost)`
 - `Vertex u = getVertex(uName)`
 - `Vertex v = getVertex(vName)`
 - `u.addEdge(v, cost)`
 - **RT:** O(1)

- `isEdge(String uName, String vName)`
 - `Vertex u = vMap.get(uName)`
 - `Vertex v = vMap.get(vName)`
 - `return (u.isNbr(v))`
 - **RT:** O(n)

Graph class:

```java
Graph() {
    this.numNodes = 0;
    this.vMap = new HashMap<String, Vertex>();
}
```

addEdge(String uName, String vName, int cost):

```java
addEdge(String uName, String vName, int cost) {
    Vertex u = getVertex(uName);
    Vertex v = getVertex(vName);
    if (u != null && v != null) {
        // Add edge
        u.addEdge(v, cost);
        v.addEdge(u, cost);
    }
}
```

isEdge(String uName, String vName):

```java
isEdge(String uName, String vName) {
    Vertex u = vMap.get(uName);
    Vertex v = vMap.get(vName);
    return (u.isNbr(v));
}
```