CS 151

Graph Implementations
Announcements

Prelab 9 is due now
Test #2 graded & returned today
• generally very well done, good job!
A graph $G=(V,E)$ is a set of vertices V and set of edges E.
- directed graph has directed edges $e=(u,v)$ that are ordered pairs of V
- undirected graphs have undirected edges $e=\{u,v\}$ of unordered pairs of V

Two nodes are neighbours or adjacent if they are connected by an edge.

A path is a sequence of nodes with the property that each consecutive pair in the sequence is connected by an edge. A simple path is a path that does not repeat nodes. A length of a path is the number of edges in that path.

A graph is connected if there is a path between every pair of nodes. A directed graph is strongly connected if there is a directed path between every pair of nodes, and weakly connected if the underlying undirected graph is connected.

A connected component of a graph is a subset of the nodes such that:
- every node in the subset has a path to every other, and
- the subset is not part of some larger set with the connected property.

The degree of a node is the number of edges incident to the node.
Graph Operations

- `size()` - return the number of nodes in the graph
- `isEmpty()` - return whether there are 0 nodes in the graph
- `isEdge(Vertex v, Vertex w)` - return true if (v, w) is an edge
- `areConnected(Vertex v, Vertex w)` - return whether v, w are connected
- `shortestPath(Vertex v, Vertex w)` - return len of the shortest v-w path
- `isConnected()` - return whether graph is one connected component
- `numComponents()` - return the number of connected components
- `findConnComponent(Vertex v)` - return vertices in v’s conn’d component
- `getAvgDegree()` - determine the average degree of all vertices
- `findSpanningTree()` - find the fewest number of edges of G to keep so that graph is still connected
- `isAcyclic()` - return whether the graph contains no cycles
- `traverse()` - iterate through nodes in an ordered fashion
Facts About Graphs

Fact 1: For any graph $G=(V,E)$, $\sum_{v \in V} \deg(v) = 2|E|$

Proof. Every edge $e=\{u,v\}$ in G is counted twice in the sum of the degrees.

Fact 2: In a directed graph, $\sum_{v \in V} \text{indeg}(v) = \sum_{v \in V} \text{outdeg}(v)$

Proof. Every edge $e=(u,v)$ adds 1 to in-degree sum and 1 to out-degree sum.

Fact 3: In a graph G with n nodes and m edges ($n=|V|$, $m=|E|$), $m \in O(n^2)$

Proof. At most you can have 1 edge between every pair of vertices.
There are $\binom{n}{2}$ ways to pick distinct pairs of vertices out of n of them.
Therefore, $m \leq \binom{n}{2} = \frac{n(n-1)}{2} \in O(n^2)$

A graph is dense if $m \in \Theta(n^2)$ and sparse if $m \in O(n)$.
Graph Implementations

1. **adjacency matrix**
 - a graph is an \(n \times n \) matrix (2D array) of edges
 \[
 e[u][v] = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 0 & \text{if } (u, v) \notin E
 \end{cases}
 \]
 - or, if you have edge costs:
 \[
 e[u][v] = \begin{cases}
 c_e & \text{if } (u, v) \in E \\
 \infty & \text{if } (u, v) \notin E
 \end{cases}
 \]

\[\begin{array}{cccc}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 1 & 0 & 1 & 1 \\
C & 0 & 1 & 0 & 1 \\
D & 0 & 1 & 1 & 0
\end{array}\]

\[\begin{array}{cccc}
A & B & C & D \\
A & 0 & 1 & 0 & 0 \\
B & 0 & 0 & 1 & 0 \\
C & 0 & 0 & 0 & 1 \\
D & 0 & 1 & 0 & 0
\end{array}\]
Graph Implementations

Graph class with adjacency matrix:

```java
int[][] edges
int numNodes

int size() -- return numNodes (or edges.length) RT: O(1)

bool isEmpty() -- return size()==0 RT: O(1)

int getDegree(Vertex u)
    indexU = u’s index in the graph
    degU = sum of num. of non-zero entries in indexU row
    return degU RT: O(n) + time to find u’s index

bool addEdge(Vertex u, Vertex v, [int cost])
    indexU, indexV = u and v’s index in graph, resp.
    + time to find u’s index
    set edges[indexU][indexV] = 1 or cost
    if graph undir, set edges[indexV][indexU] = 1 or cost
    RT: O(1) + time to find u’s index

bool isEdge(Vertex u, Vertex v)
    indexU, indexV = u and v’s index in graph, resp.
    return ( edges[indexU][indexV] != 0 ) RT: O(1) + time to find u’s index
```
2. adjacency list

- A graph is a list of vertices
- Each vertex keeps track of its incident edges (equiv., its adjacent nodes)
Graph Implementations

Graph class with adjacency list:

```java
LL<Vertex> nodes // we’ll change this later
int numNodes

Vertex class:
LL<Edge> adj
String name

Edge class:
Vertex start // may not need this if inside Vertex class
Vertex dest
int/double cost

Edge( Vertex dest, int cost )
    this.dest = dest
    this.cost = cost

boolean equals( Object o ) // if dest same, it’s the same edge
    return ((Edge)o).dest.equals( this.dest )
```
Graph Implementations

Graph with adjacency list:

Vertex class:
 LL<Edge> adj
 String name
 // may add more class members such as prev, dist, scratch

Vertex(name) this.name = name

int degree() return adj.size()

addEdge(Vertex w, int cost) adj.add(new Edge(w, cost))

bool equals(Object o)
 return ((Vertex)o).name.equals(this.name)

bool isNbr(Vertex w)
 return adj.contains(new Edge(w))

LL<Vertex> nbrs() for each e in adj, add e.dest to new LL and return it
Graph with adjacency list:

Graph class:
 LL<Vertex> nodes

- but user doesn’t usually refer to vertices as Objects—they prefer names
- how can we store vertices by their names & still have quick access?

Use a hashMap of <String,Vertex> pairs!
Graph Implementations

Graph with adjacency list:

Graph class:
```
HashMap<String,Vertex> vMap
int numNodes
```

int size() -- return numNodes (or vMap.size()) RT: O(1)

bool isEmpty() -- return (size() == 0) RT: O(1)

private Vertex getVertex(String vName) RT: O(1)
```
    Vertex v = vMap.get( vName )
    if( v == null )
        vMap.put( vName, new Vertex( vName ) )
    return v
```

int getDegree(String vName) RT: O(1)
```
    Vertex v = vMap.get( vName )
    if( v == null ) throw exception
    return v.degree()
```
Graph Implementations

Graph with adjacency list:

Graph class:
- HashMap<String,Vertex> vMap
- int numNodes

addEdge(String uName, String vName, int cost)
 Vertex u = getVertex(uName)
 Vertex v = getVertex(vName)
 u.addEdge(v, cost)
 // if G undir, also v.addEdge(u, cost)
 RT: O(1)

bool isEdge(String uName, String vName)
 Vertex u = vMap.get(uName)
 Vertex v = vMap.get(vName)
 if(u or v is null) return false
 return (u.isNbr(v))
 RT: O(n)