Algorithm Idea

- **input:** a graph G=(V,E) and a start vertex s
- **goal:** determine the length of the shortest path from s to every vertex in V
 (and while you're at it, compute the path itself.)

Algorithm Details

```plaintext
unweightedSP (Vertex s)
    • Let S be the set of "explored" nodes, initially S = ∅
    • for each node v (incl. s) set v.prev = null, v.dist = ∞
    • initialize queue Q to contain s, set s.dist = 0
    • while Q is non-empty
        • let v be the front element of Q
        • add v to S (mark it as "explored")
        • for each of v's unexplored_nbrs w
            • if w not already in Q
                • set w.prev = v
                • set w.dist   = v.dist + 1
                • add w to Q
    printPath (Vertex w)
        • if w.dist == ∞, print "unreachable"
        • else if (w.prev != null)
            • printPath (w.prev)
            • print " ---> w"
```

RT: (vague) for loop is O(n)
while loop is O(n)
therefore O(n^2)

RT: (precise) for loop is O(deg(v))
and so O(m+n)

\[\sum_{v \in V} \text{deg}(v) = 2 |E| \]

RT: just O(n)

S = ∅
Let S be the set of "explored" nodes, initially
for each node v (incl. s) set v.pred = null, v.dist = ∞
initialize queue Q to contain s, set s.dist = 0
while Q is non-empty
 let v be the front element of Q
 add v to S (mark it as "explored")
 for each of v's unexplored nbrs w
 if w not already in Q
 add w to Q
 set w.prev = v
 set w.dist = v.dist + 1

Example

Proof of Correctness

Turns out this algorithm is a special case of Dijkstra's algorithm. We'll prove

Dijkstra's later and then will suffice as a proof for BFS, too.

Example
Connectivity

- **isConnected()**
 - if `G` is empty, return true
 - otherwise, pick some arbitrary vertex `s` and call `unweightedSP(s)`
 - if any vertex `v` has `v.dist = \infty` then return false; else return true

- **numComponents()**
 - while there is some vertex `v` that is still unmarked
 - `numComponents++`
 - run bfs/unweightedSP from `v`

 RT: O(m+n)

 ... depends on how quickly you can find an unmarked vertex

- **isAcyclic()**
 - for each connected component
 - run bfs from some unmarked vertex `s` in the current component
 - if, during bfs, one of `v`'s neighbours is already marked, return false
 - return true

Q: What if we used dfs (stack) instead of bfs (queue) in all of these methods?

Positive) Weighted Shortest Paths

Input: a graph `G=(V,E)` with **positive** edge costs and a start vertex `s`

Goal: determine the cost of the least-cost path from `s` to every vertex in `V`

Q: will `unweightedSP` (aka bfs) still work?

A: sadly, no

- need to adjust the order in which we remove vertices from queue
- rather than removing first-in, want to remove closest-to-`s`
- we'll need to adjust `w.dist` many times, as we find shorter distances

idea: weightedSP()

- explore vertices out of `s` at a uniform rate
- think of edge costs as lengths of pipe, and follow water flowing out of `s`
- we'll explore vertices in the order the water hits them

RT:

- `O(\text{unweightedSP}(\text{data}))` will still work
- `O(\text{unweightedSP}(\text{data}))` will determine the cost of the least-cost path from `s` to every vertex in `V`

Input: a graph `G=(V,E)` with **positive** edge costs `\geq 0` and a start vertex `s`

Dijkstra's Algorithm

weightedSP(Vertex s) a.k.a. DIJKSTRA'S ALGORITHM (die-kstra)

RT: the loop is `O(\text{deg}(v) \cdot \text{RT of decreaseKey}) = O(\text{deg}(v) \cdot \ln n)` and `\text{getMin}` is `O(\ln n)`. We do this at most once per vertex. Total RT is thus

**S = \emptyset \sum_{v \in V} (\ln n + \text{deg}(v) \cdot \ln n) \in O(n + 2m \ln n) \in O((n + m) \ln n)$$

Connectivity