CS 151
Graph Algorithms
Unweighted Shortest Paths Problem

input: a graph $G=(V,E)$ and a start vertex s
goal: determine the length of the shortest path from s to every vertex in V
(and while you’re at it, compute the path itself.)

Each vertex v will have dist and prev fields.
v.dist is length of s.p. from s to v, v.prev is Vertex preceding v on this path.
Ex: unweightedSP(A) will determine the s.p. from A to B, C, and D.
input: a graph $G=(V,E)$ and a start vertex s
goal: determine the length of the shortest path from s to every vertex in V
(and while you’re at it, compute the path itself.)

idea: unweightedSP(s)
 • initialize s.dist = 0 and s.pred = null
 • for each neighbour v of s, set v.dist = 1 and v.pred = s
 • for each as-of-yet-unexplored neighbour w of some neighbour v of s
 • set w.dist = v.dist + 1 = 2 and w.pred = v
 • repeat this process, exploring the nodes outwards in “concentric circles”

Does this remind you of any algorithm we’ve seen before?
It is just BFS (breadth-first search), but on a graph instead of a tree!

Questions to Address:
 • how will we keep track of explored vertices and who is “next in line”?
 • what happens if G is not connected? (how does it end?)
 • does this algorithm actually find the shortest path? (does it work?)
unweightedSP(Vertex s)

- Let S be the set of “explored” nodes, initially \(S = \emptyset \)
- for each node \(v \) (incl. \(s \)) set \(v\).pred = null, \(v\).dist = \text{infty}
- initialize queue \(Q \) to contain \(s \), set \(s\).dist = 0
- while \(Q \) is non-empty
 - let \(v \) be the front element of \(Q \)
 - add \(v \) to \(S \) (mark it as “explored”)
 - for each of \(v \)’s unexplored nbrs \(w \)
 - if \(w \) not already in \(Q \)
 - set \(w\).prev = \(v \)
 - set \(w\).dist = \(v\).dist + 1
 - add \(w \) to \(Q \)

printPath(Vertex w)

- if \(w\).dist == \text{infty}, print “unreachable”
- else if (\(w\).prev != null)
 - printPath(\(w\).prev)
 - print “ \(\rightarrow \) w “

RT: (vague) for loop is \(O(n) \)
while loop is \(O(n) \)
therefore \(O(n^2) \)

RT: (precise) for loop is \(O(\text{deg}(v)) \)
and
\[
\sum_{v \in V} \text{deg}(v) = 2|E|
\]
so \(O(m+n) \)

RT: just \(O(n) \)
Let \(S \) be the set of “explored” nodes, initially \(S = \emptyset \).

- for each node \(v \) (incl. \(s \)) set \(v.\text{pred} = \text{null}, \) \(v.\text{dist} = \text{infty} \)
- initialize queue \(Q \) to contain \(s \), set \(s.\text{dist} = 0 \)
- while \(Q \) is non-empty
 - let \(v \) be the front element of \(Q \)
 - add \(v \) to \(S \) (mark it as “explored”)
 - for each of \(v \)’s unexplored nbrs \(w \)
 - if \(w \) not already in \(Q \)
 - add \(w \) to \(Q \)
 - set \(w.\text{prev} = v \)
 - set \(w.\text{dist} = v.\text{dist} + 1 \)
Let S be the set of “explored” nodes, initially $S = \emptyset$.

For each node v (incl. s) set $v.\text{pred} = \text{null}$, $v.\text{dist} = \text{infty}$.

Initialize queue Q to contain s, set $s.\text{dist} = 0$.

While Q is non-empty

- Let v be the front element of Q.
- Add v to S (mark it as “explored”).
- For each of v’s unexplored nbrs w
 - If w not already in Q
 - Add w to Q
 - Set $w.\text{prev} = v$
 - Set $w.\text{dist} = v.\text{dist} + 1$.
Let S be the set of “explored” nodes, initially $S = \emptyset$
for each node v (incl. s) set $v.pre = \text{null}$, $v.dist = \infty$
initialize queue Q to contain s, set $s.dist = 0$
while Q is non-empty
 • let v be the front element of Q
 • add v to S (mark it as “explored”)
 • for each of v’s unexplored nbrs w
 • if w not already in Q
 • add w to Q
 • set $w.pre = v$
 • set $w.dist = v.dist + 1$
Proof of Correctness

Turns out this algorithm is a special case of Dijkstra’s algorithm; we’ll prove Dijkstra’s later and that will suffice as a proof for BFS, too.
boolean isConnected()
 • if G is empty, return true
 • otherwise, pick some arbitrary vertex s and call unweightedSP(s)
 • if any vertex v has v.dist = infty then return false; else return true

RT: O(m+n)

int numComponents()
 • while there is some vertex v that is still unmarked
 • numComponents++
 • run bfs/unweightedSP from v

RT: ... depends on how quickly you can find an unmarked vertex

boolean isAcyclic()
 • for each connected component
 • run bfs from some unmarked vertex s in the current component
 • if, during bfs, one of v’s neighbours is already marked, return false
 • return true

Q: What if we used dfs (stack) instead of bfs (queue) in all of these methods?
(Positive) Weighted Shortest Paths

input: a graph $G=(V,E)$ with positive edge costs $c_e > 0$ and a start vertex s

goal: determine the cost of the least-cost path from s to every vertex in V
(and while you’re at it, compute the path itself.)

Q: will unweightedSP (aka bfs) still work?
A: sadly, no
• need to adjust the order in which we remove vertices from queue
 • rather than removing first-in, want to remove closest-to-s
• we’ll need to adjust w.dist many times, as we find shorter distances

idea: weightedSP(s)
• explore vertices out of s at a uniform rate
 • think of edge costs as lengths of pipe, and follow water flowing out of s
 • we’ll explore vertices in the order the water hits them
• once we explore a vertex, we’ve found its shortest path
• as we explore each vertex v, we can see new path to its neighbors that
 may or may not be better than the paths we already know about
Let S be the set of “explored” nodes, initially $S = \emptyset$.

For each node v (incl. s) set $v.\text{pred} = \text{null}$, $v.\text{dist} = \text{infty}$.

Initialize priority queue Q to contain s, set $s.\text{dist} = 0$.

While Q is non-empty,

let v be the min element of Q (v has min dist of all unexplored vertices).

Add v to S (mark it as “explored”).

For each of v’s unexplored nbrs w,

if $v.\text{dist} + \text{cost}(v,w) < w.\text{dist}$

set $w.\text{prev} = v$

set $w.\text{dist} = v.\text{dist} + \text{cost}(v,w)$

if w not in Q then add w to Q

else, $Q.\text{decreaseKey}(w)$ (b/c w’s dist has decreased)

RT: for loop is $O(\text{deg}(v) \cdot (\text{RT of decreaseKey})) = O(\text{deg}(v) \cdot (\log n))$ and getMin is $O(\log n)$. We do this at most once per vertex. Total RT is thus

$$\sum_{v \in V} (\log n + \text{deg}(v) \cdot \log n) \leq (n + 2m) \log n \in O((n + m) \log n)$$