
Trees

See Chapter 18 of Weiss

By the way, I am

 Bob Geitz
www.cs.oberlin.edu/~bob/cs151

Ben is at a conference in Kansas City (where,
according to Rogers and Hammerstein, everything
is up to date and they've gone about as far as they
can go....). He'll be back on Monday.

Trees are the second-most important data
structure in programming, following only lists.

We will think about trees in two different ways.

Graph definition: A tree is a kind of directed
graph, so it has a set of nodes and a set of edges
connecting the nodes. There is one special node
called the root. Each node except for the root in a
tree has an incoming edge from one other node.
The root has no incoming edges. There is a path of
edges from the root to every other node. Nodes
that have no outgoing edges are called leaves.

We call the node at the start of an edge a parent
node. The node at the end of this edge is the
parent's child.

In this terminology a node can have multiple
children, and every node but the root has exactly
one parent.

We measure the length of a path in the tree by the
number of edges it contains (not the number of
nodes). The height of a node is the longest path
from it to a leaf. The height of the overall tree is the
height of its root. The depth of a node is the length
of the path from it to the root. The depth of the
root itself is 0.

A

B C

D E F

G

Node Height Depth

A 3 0

B 1 1

C 2 1

D 0 2

E 0 2

F 1 2

G 0 3

Here is a recursive definition of a tree:

A tree is either empty or it is a root r and 0 or more
non-empty subtrees connected to r by an edge.

A binary tree is one in which each node can have at
most two children. The children are often referred
to as the left and right children.

Trees are used in many situations:
• Anything hierarchical, like file systems or

administrative structures or Java class
structures can be represented by trees.

My Documents

Classes Committees Personal

CS 150 CS 151 CS 357

• Many compilers build a tree representation
of the program they are compiling, guided
by a grammar for the programming
language.

The next slide shows a tree representing
 int x;
 x = 1;
 while (x < 10) {
 print(x);
 x = x + 1;
 }

program

x

int

compound
statement

assign

x 1

while

<

x 10

compound
statement

call

print x

assign

x +

x 1

• Games are often represented by trees, where
the root represents the current state of the
game and children represent possible moves.

• Indexes in a database are built on tree
structures.

• Since arithmetic operators take two arguments, one
use of binary trees is in representing expressions. You
might represent 3*(4+5) as

*

3 +

4 5

Such a tree has operators in the interior nodes and
numbers in the leaves. There is an easy recursive
algorithm to compute its value -- evaluate the left child,
evaluate the right child and apply the operator to those
values.

So how do we represent trees?

You can use arrays. If there are at most 2 children of each
node, you can put the root at index 0, its children at index
1 and 2, the children of the node at index 1 could be at
indices 3 and 4, and so forth. The children of the node at
index n are at index 2n+1 and 2n+2. The parent of node at
index k is at index (k-1)/2. So the array
[2 9 1 3 5] represents the tree

2

9 1

3 5

If a node could have 3 children the kids of node [n] would be at
[3n+1] [3n+2] and [3n+3]

A more flexible scheme is to use a linked structure. In Lab 5 we will
use the following 3 classes:

abstract class BinaryTree<T> {
 // methods we want the tree classes to have
}

class EmptyTree<T> extends BinaryTree<T> {
 // no data and just trivial methods
}

class ConsTree<T> textends BinaryTree<T> {
 T data;
 BinaryTree<T> left;
 BinaryTree<T> right;
 // non-trivial methods
}

For example, suppose you want to add a height()
method to the BinaryTree class. You do this in
three steps:

First, you need to add an abstract height() method
to the abstract BinaryTree<T> class:

 public abstract int height();

Next, add a height() method to the EmptyTree<T>
class. The EmptyTree methods are almost always
trivial. In this case

 public int height() {
 return -1;
 }

Finally, add a height method to the ConsTree<T>
class. This is usually the only step that has any
substance. Because the BinaryTree structure is
recursive, the ConsTree methods are usually
recursive.
In this case we want to find the height of a tree in
terms of the heights of its children.

A

B C

D E F

G

The method for the ConsTree<T> class is

int height() {
 return 1+ Math.max(left.height(), right.height());
}

Note that we defined the height of an empty tree as
-1 to make this work. A leaf node has height 0 and 2
empty trees as children, so the empty trees need to
have height -1.

Note also that our recursive tree structure has
empty trees as the base cases at the bottom of our
trees. ConsTrees always have children, so every
downward path in the tree is terminated by an
EmptyTree. This means that the base cases for our
recursions are the methods in the EmptyTree class.

