
Shortest Unweighted Path

Remember that the (unweighted) length of a
path in a graph is the number of edges the path
contains. Consider a directed graph and let S be
any specific node in this graph. We now give an
algorithm for finding the shortest path from S to
every other node in the graph.

The algorithm maintains a queue of nodes,
which initially contains only S. It gives each
node a value, which ultimately will be the
length of the shortest path. Finally, it gives each
node a predecessor node in its path from S.

Initially make the value of each node except S be
"INFINITY". If you are thinking of a Java
implementation, INFINITY can be either
Integer.MAX_VALUE or Double.MAX_VALUE,
depending on how you want to think of the
values. Make the value of S be 0.

Now perform the following steps until the queue
is empty.

a) Remove the head of the queue. Call this
node X.

b) For each outgoing edge from X to another
node Y, if the value of Y is INFINITY, make
the new value of Y be the value of X + 1,
make the predecessor of Y be X, and add Y
to the queue.

Now, how do we know this algorithm works?

I claim that if node X has distance n from S then the
value this algorithm assigns to X is n. This is certainly
true when n is 0 or 1. For other nodes let S=X0->X1-
>X2->...->Xn=X be a path of length n to X. Suppose
node Xt is the first node on this path that the
algorithm assigns the wrong distance to. This means
that node Xt-1 has the correct distance. When Xt-1 is
removed from the queue and assigned the distance t-
1, Xt will be added to the queue with distance t. So Xt

in fact gets the correct distance. This means that all
of the nodes in the path, including X, get the correct
distance.

Note that this algorithm visits every edge in
the graph (at least every edge that is
reachable from S and so has running time
O(|V|).

