
Tries

.

A trie or prefix tree is a data structure in which
the keys are broken down into a sequence of
elements. Tries are most often used for strings,
where the elements of the key are the letters it
is composed of, or for numbers, where the
elements are the digits. The word "trie" comes
from "retrieval". Some authors pronounce it
like "tree"; others like "trie".

To insert into a trie, we have a loop that starts at
the root and iterates through the elements of the
key. If the next element is x, we go to child x of
the current node; if there is no such child we
make one, then go there. When we get to the
end of the key, we change the boolean flag of the
current node to true.

root

1

3

7

2
5

F

T T

T T

With integer keys we get the next element with
k%10 and replace k by k/10. This goes through
the digits from right to left. Here is a picture of
an integer trie storing the numbers 21, 53, 3 and
7:

The idea behind this data structure is very
simple. We build trees out of nodes, where a
node has one possible child for each value of
the next element -- in an integer trie each node
has 10 possible children; in a String trie each
has 26 possible children (assuming we map
everything to lower case; otherwise there are
52 possible children). Each node also carries a
boolean flag, which is initialized to false.

Note that the data is stored nowhere in the
structure; it is implicit in the sequence of steps
needed to get to the node that represents the
data.

Tries give lookups that depend only on the
number of elements that make up the key -- a
string of 4 letters can be looked up in a trie in 4
steps, regardless of the size of the trie. We
pay for this efficient lookup with the size of the
trie. Note that each node of a String trie has
an array of 26 references and a boolean flag --
this is about 105 bytes of data for one node.

If we used to trie to hold a dictionary of 20,000
words and if the trie had another 20,000
placeholder nodes, this structure would be over 4
MB. By contract, a sorted list of 20,000 Strings
averaging 6 letters each would take up about 0.2
MB and could be searched in about 14
=log2(20000) steps and an AVL tree for this data
might take up about 0.8MB, again needing about
14 steps for a search.

Questions:
a) What is the search algorithm for a trie?
b) How would you remove an element from a trie?
c) How would you make a list of the values stored in a trie?

