
Shortest Weighted Path
With Nonnegative Weights

Dijkstra's Algorithm

See Section 14.6.2 of the text.

Last week we found the shortest path from a
specific source node to every other node in the
graph, measuring the length of a path by the
number of its edges.

The algorithm was: give each node a value field
and a predecessor field. Give the source node a
value 0 and all other nodes value INFINITY.
Initially make all nodes have null for their
predecessors.

Maintain a queue of nodes. Initially the source
node is added to the queue. Perform the following
steps until the queue is empty:

a) Remove the head of the queue. Call this
node X.

b) For each outgoing edge from X to another
node Y, if the value of Y is INFINITY, make the
new value of Y be the value of X + 1, make
the predecessor of Y be X, and add Y to the
queue.

Dijkstra's algorithm covers the extension of this
to graphs with non-negative edge weights.
For this algorithm we will assume that all
weights are non-negative. We will see another,
less efficient, algorithm that will handle the case
of negative weights.

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

We measure the "length" of a path by the sum of
the weights on its edges. We want to find the
shortest (cheapest) path from a source node S to
every other node in the graph.

For example:

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

Clicker Q: What is the
cost (or length or weight)
of the cheapest path from
A to G?

A. 6
B. 8
C. 9
D. 17

What made the unweighted case work was that
we first put into the queue the only node whose
value was 0, then all of the nodes whose value
was 1, then all whose value was 2 and so forth.
We know our algorithm works because if there
was a shorter path to it we would have put it into
the queue sooner.

We can treat this algorithm similarly. We first get
the only node whose path has sum 0 (i.e, the
source node). We then find the next minimum-
cost node, then the next and so forth. We will use
a priority queue to store our "working set" of
nodes. Each time we finish with a node we put its
children into the priority queue.

Here is why we can't have negative edge costs.
When we remove an item from our priority
queue, we need to be sure that we have its
cheapest path. If we allowed negative edge
weights, there might be a roundabout path we
haven't explored yet that has a large negative
weight, giving a path to the node that is
cheaper that what we have found so far. In that
case our algorithm wouldn't work. So for now
we'll stick to non-negative weights.

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

For example, suppose we have this graph and
our source node is A:

Initially our priority queue has only A with
value 0.

Queue: {(A 0)}

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

We remove A from the queue, output it, and
add the nodes at the end of A's outgoing
edges to the queue

Queue: {(B 4) (F 5)}
Output: [(A 0)]

We remove the head of the queue, B, then add
its children with their weights added to B's

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

Queue: {(F 5) (D 5) (C 6)}
Output: [(A 0) (B 4)]

The next smallest path is to F, which has no children:

Queue: {(D 5) (C 6)}
Output: [(A 0) (B 4) (F 5)]

D has edges to A and F, which have been finished, and to
E and G

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

Queue: {(C 6) (E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5)]

Next we have

Queue: {(E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6)]

A

B C

D E

F G

4

2

101 3

2

5 8

1

4

2

1

Here is a restatement of where we are:
Queue: {(E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6)]

Note that the edge from E to G gives a cheaper
path than what we found before, so we add
this edge to the queue

Queue: {(G 8) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6) (E 7)]

One more step finishes the process:

Queue: {(G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6) (E 7) (G 8)]

We have multiple copies of a node in the
priority queue with different values because
our queue doesn't automatically restructure
when one of its values changes. Once the
node has been removed from the queue we
skip over any remaining copies of it when we
remove the head of the queue.

Clicker Question: How would we estimate the
running time of this algorithm? We consider every
edge and there are |E| edges. Each time we look
at an edge we potentially insert another node into
the priority queue. Remember that a node can be
in the queue more than once. So where does this
come out to?
A. O(log(|E|))
B. o(|E|)
C. O(|E|*log(|E|))
D. O(|E|2)

How long does this algorithm take? We might add
a node to the priority queue for each edge of the
graph, so the size of the queue might be |E|. Each
removal of the head of the queue takes log(|E|).
Altogether, the running time is
O(|E| log(|E|). This is slightly worse than our
estimate for unweighted graphs.

