
Shortest Weighted Path
With Nonnegative Weights

Dijkstra's Algorithm

See Section 14.6.2 of the text.



Last week we found the shortest path from a 
specific source node to every other node in the 
graph, measuring the length of a path by the 
number of its edges.  

The algorithm was: give each node a value field 
and a predecessor field. Give the source node a 
value 0 and all other nodes value INFINITY.  
Initially make all nodes have null for their 
predecessors.



Maintain a queue of nodes.  Initially the source 
node is added to the queue. Perform the following 
steps until the queue is empty:

a) Remove the head of the queue. Call this 
node X. 

b) For each outgoing edge from X to another 
node Y, if the value of Y is INFINITY, make the 
new value of Y be the value of X + 1, make 
the predecessor of Y be X, and add Y to the 
queue.



Dijkstra's algorithm covers the extension of this 
to graphs with non-negative edge weights.  
For this algorithm we will assume that all 
weights are non-negative.  We will see another, 
less efficient, algorithm that will handle the case 
of negative weights.
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We measure the "length" of a path by the sum of 
the weights on its  edges.  We want to find the 
shortest (cheapest) path from a source node S to 
every other node in the graph.

For example:
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Clicker Q: What is the 
cost (or length or weight)  
of the cheapest path from 
A to G?

A. 6
B. 8
C. 9
D. 17



What made the unweighted case work was that 
we first put into the queue the only node whose 
value was 0, then all of the nodes whose value 
was 1, then all whose value was 2 and so forth.  
We know our algorithm works because if there 
was a shorter path to it we would have put it into 
the queue sooner.



We can treat this algorithm similarly.  We first get 
the only node whose path has sum 0 (i.e, the 
source node).  We then find the next minimum-
cost node, then the next and so forth.  We will use 
a priority queue to store our "working set" of 
nodes.  Each time we finish with a node we put its 
children into the priority queue.



Here is why we can't have negative edge costs.  
When we remove an item from our priority 
queue, we need to be sure that we have its 
cheapest path.  If we allowed negative edge 
weights, there might be a roundabout path we 
haven't explored yet that has a large negative 
weight, giving a path to the node that is 
cheaper that what we have found so far.  In that 
case our algorithm wouldn't work. So for now 
we'll stick to non-negative weights.
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For example, suppose we have this graph and 
our source node is A:

Initially our priority queue has only A with 
value 0.

Queue:  {(A 0)}
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We remove A from the queue, output it, and 
add the nodes at the end of A's outgoing 
edges to the queue

Queue: {(B 4) (F 5)}
Output: [(A 0)]

We remove the head of the queue, B, then add 
its children with their weights added to B's
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Queue: {(F 5) (D 5) (C 6)}
Output: [(A 0) (B 4)]

The next smallest path is to F, which has no children:

Queue: {(D 5) (C 6)}
Output: [(A 0) (B 4) (F 5)]

D has edges to A and F, which have been finished, and to 
E and G
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Queue: {(C 6) (E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5)]

Next we have

Queue: {(E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6)]
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Here is a restatement of where we are:
Queue: {(E 7) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6)]

Note that the edge from E to G gives a cheaper 
path than what we found before, so we add 
this edge to the queue

Queue: {(G 8) (G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6) (E 7)]



One more step finishes the process:

Queue: {(G 9)}
Output: [(A 0) (B 4) (F 5) (D 5) (C 6) (E 7) (G 8)]



We have multiple copies of a node in the 
priority queue with different values because 
our queue doesn't automatically restructure 
when one of its values changes.  Once the 
node has been removed from the queue we 
skip over any remaining copies of it when we 
remove the head of the queue.  



Clicker Question: How would we estimate the 
running time of this algorithm?  We consider every 
edge and there are |E| edges.  Each time we look 
at an edge we potentially insert another node into 
the priority queue. Remember that a node can be 
in the queue more  than once.  So where does this 
come out to?
A. O( log( |E| ) )
B. o( |E| )
C. O( |E|*log( |E| ) )
D. O( |E|2 )



How long does this algorithm take?  We might add 
a node to the priority queue for each edge of the 
graph, so the size of the queue might be |E|.  Each 
removal of the head of the queue takes log( |E| ).  
Altogether, the running time is 
O( |E| log(|E| ).  This is slightly worse than our 
estimate for unweighted graphs.  


