
Java Collections

See the documentation for the Java Collections
Framework.

This gives implementations for some standard
data structures. We will do our own versions of
several of these as we study them.

In Lab 2 we will re-implement the ArrayList class.

Example

I want to write a program that will read a
sequence of names, sort it, and print it back in
alphabetical order. Typical names might be

 bob

 Fred Flintstone

 John Frederick Oberlin
 Charles Philip Arthur George Windsor

First, what class structures will we use for this?

I like this:

 First, we’ll have a Name class to hold the
names. This has two String class variables: first
and last (which might more properly be called
givenNames, familyName. We will make a
constructor that takes a string holding the full
name and splits it up into those fields.

Then we need to store a whole sequence of
these. This seems like a good use of ArrayLists,
so we’ll make an ArrayList<Name> object to hold
the list.

There are two ways to handle the sorting. One
way is to havethe Name class implement the
Comparable<Name> interface, which just means
that we give it a compareTo() method. This
takes a Name n as an argument and returns -1,
0, or 1 if this < n, this ==n, or this > n.

The other way is to make a function object that
implements the Comparator interface. This class
needs a method Compare(n1, n2) that again returns
-1, 0 or 1 if n1<n2, n1==n2 or n1 > n2.

We’ll do both. We will make the Comparator class
a nested class, meaning that it is a private static
class inside the class that contains the ArrayList that
we will use it to sort.

Another Example

I want to write an inventory program. This will
read in lines from the user that are formatted as
 <object> <count>
For example,
 hammer 23
This indicates that we have found 23 hammers. If
we see another line
 hammer 5
then we need to update our count of hammers to
28.

What we are doing here is associating Strings
with ints. We could do this by keeping a list of
strings and a corresponding list of ints but that
would be a pain to maintain. Look through the
Collection classes for a structure that might do
this.

The Java Utilities package gives us Collections,
which are mostly sequential things like lists,
stacks and queues, and Maps, which are
associative structures. Look at the Java Map
interface

