
Java Collections

The Java Collections Framework gives
implementations for some standard data
structures. We will do our own versions of
several of these as we study them.

In Lab 2 we will re-implement the ArrayList class.

Example 1
I want to write a program that reads a bunch of
numbers (integers) from the user, then at the end
prints them out. To do this in C we would use an
array, and hope it is big enough to hold the data.
If we run out of room we could make a bigger
array.
In Java we have ArrayLists to hold the data.
ArrayList is a generic class that takes a type
parameter:

public class ArrayList<E> {
....

}

There are many useful methods of class ArrayList,
but we will focus here on a few. If L is an ArrayList,
then

• L.size() is the number of entries in L
• L.add(x) appends x to the end of the list
• L.add(i, x) adds x to the list at positon i,

shifting the tail of the list back one to make
room.

• L.get(i) is the element at position i.

This makes our program very simple. We start by
creating the ArrayList:

ArrayList<Integer> L = new ArrayList<Integer>();

Each time we get a new data value x we add it to
the list:

L.add(x);

At the end we print the list: using either
for (int x: L)

System.out.println(x)

or, if we want to use indices
for (int i = 0; i < L.size(); i++)

System.out.println(L.get(i));

Example 2

I want to write a program that will read a
sequence of names, sort it, and print it back in
alphabetical order. Typical names might be

bob

Fred Flintstone

John Frederick Oberlin
Charles Philip Arthur George Windsor

Naturally, we want to sort by last name.

What class structures will we use for this?

I like this:

First, we’ll have a Name class to hold the
names. This has two String class variables: first
and last (which might more properly be called
givenNames, familyName). We will make a
constructor that takes a string holding the full
name and splits it up into those fields.

Then we need to store a whole sequence of
these. This seems like another good use of
ArrayLists, so we’ll make an ArrayList<Name>
object to hold the list.

At this point the program is much like our
integer list program. The one difference is that
we need to sort the list.

There are two ways to handle the sorting. One
way is to have the Name class implement the
Comparable<Name> interface, which just means
that we give it a compareTo() method. This
takes a Name n as an argument and returns -1,
0, or 1 if this < n, this ==n, or this > n.

The Collections class has a static method sort()
that can be applied to any list whose base type
implements the Comparable interface. So we add
method compareTo() to Name, we note that
Name implements the Comparable interface, and
then we call Collections.sort(L), where L is the list
of names to be sorted.

The other way is to make a class that implements
the Comparator interface. This class needs a
method Compare(n1, n2) where n1 and n2 have
the base type of the list being sorted. Compare
returns -1, 0 or 1 if n1<n2, n1==n2 or n1 > n2.

The Collections class has a method sort(L, comp)
where comp is an object of the class that
implements the Comparator interface. This time
we don't need to make any changes to the Name
class; we add the comparator class as a nested class
inside our application program.

HashMap Example

I want to write an inventory program. This will
read in lines from the user that are formatted as

<object> <count>
For example,

hammer 23
This indicates that we have found 23 hammers. If
we see another line

hammer 5
then we need to update our count of hammers to
28.

Clicker Question:
How would you do this in Python?

A. Keep a variable hammer for the number of
hammers, saw for the number of saws, etc.

B. Keep a list of pairs: ((hammer, 5), (saw, 7))
etc.

C. Keep a dictionary whose values are the item
names and whose keys are the counts.

D. Keep a dictionary whose keys are the item
names and whose values are the counts.

What we are doing here is associating Strings
with ints. We could do this by keeping a list of
strings and a corresponding list of ints but that
would be a pain to maintain. In Python you
would use a Dictionary to hold this data. In Java
such an associative structure is called a map.

The Collections Framework has two map
structures -- HashMaps and TreeMaps. We will
implement both this semester, so you'll be able to
see the differences. For now we'll just do this
with a HashMap.

You can think of HashMaps in the way you think of
dictionaries in Python -- they associate values to
keys. The key field is like an index; in our inventory
program it will be the name of the item, like
"hammer". The value field is the value being
associated with the corresponding key; in our
program this is the count of how many such items
we have.

HashMaps take two class parameters -- one class
for the key and one for the values, as in

HashMap<Key, Value>
For our inventory program the structure is

HashMap<String, Integer>

We construct our inventory structure with

HashMap<String, Integer>inventory = new HashMap<String, Integer>();

There is a put method for inserting into the
HashMap:

inventory.put("hammer", 5)
associates the number 5 to the string "hammer".

Similarly, there is a get method for finding the
value associated with a particular key:

inventory.get("hammer")
tells you the number associated with string
"hammer".

Just as with Python, there is a runtime error if you
try to get the value associated with a string that is
not one of the current keys, so it is necessary to
check that something is a key before using it as an
argument to get. In Python you would say
something like:

if name in inventory.keys():
inventory[name] += count

else:
inventory[name] = count

Here is the Java code for updating the HashMap:
if (inventory.containsKey(name)) {

int current = inventory.get(name);
inventory.put(name, current+count);

}
else

inventory.put(name, count);

In Python there is a method for obtaining a list of the
current keys in a HashMap; in Java the keySet()
method gives a set of the current keys. You can't
iterate through sets with a for-loop the way you can
with lists, but you can obtain an iterator structure
that will do this. You will implement iterators in Lab
4. Here is the code for using an iterator to print the
data in our HashMap:

Set keys = inventory.keySet();
Iterator<String> iter = keys.iterator();
while (iter.hasNext()) {

String name = iter.next();
Integer count = inventory.get(name);
System.out.printf("%-10s %3d \n", name, count);

}

