
Informally, we say that an algorithm that 
operations on input of size n is worst-case O(f(n))  
(e.g. O(n2) ) if for large values of n the algorithm 
uses no more than a fixed constant times f(n) 
basic operations.  For example, we showed that 
BubbleSort uses no more than 2n(n-1) 
operations; this is certainly no more than 2n2, 
which is a multiple of n2, so BubbleSort is worst-
case O(n2).  



Stylistically, we try to keep the orders as simple 
as possible.  Since there is an arbitrary constant 
factor O(n2) is the same as O(23n2), which in 
turn is the same as O(23n2+5n+6).  We 
represent all of these as O(n2). 



There are several symbols like O:
• O( f(n) ) (Big-Oh) represents an upper bound --

for large n the algorithm is no worse than a 
constant times f(n), but it might be better.

• W( f(n) ) (Big-Omega) represents a lower bound --
for large n the algorithm is no better than a 
constant times f(n).  

• Q( f(n) ) (Big-Theta) represents  both an upper 
and a lower bound.

• o( f(n) ) (Little-Oh) is a strict upper bound: O(f(n)) 
and not  W( f(n) ) 



Here are a few formal definitions:

We say function T(n) is O( f(n) ) if there are 
constants k and N so that for every n >= N we 
have T(n) <= k*f(n).

We say T(n) is W( f(n) ) if there are constants k 
and N so that for every n>=N we have 

T(n) >= k*f(n).



Here is an addition rule:  if T1(n) is O( f(n) ) and 
T2(n) is O( f(n) ) then T1(n) + T2(n) is O( f(n) ).

For example, 3n3-2n2+27 is O(n3) because each 
of its terms is O(n3).  

In general, a polynomial of degree k is O( nk) 
because each of its terms is O(nk).



Note that all logarithms are proportional -- if a 
and b are any two bases, then

loga(x) = logb(x)*loga(b)

If we are only talking about orders of growth, it 
doesn't matter if we interpret "log" as meaning 
base-2 logs or base-10 logs or natural logs; each 
is a constant times each of the others.


