
Linked Structures

See Section 3.2 of the text.

First, notice that Java allows classes to be
recursive, in the sense that a class can have an
element which is itself an object of that class:

class Person {

 String name;

 Person spouse;

}

We can use this to build linked structures of
almost any shape or complexity. Each element
of the structure is a node. A node can hold data,
and it also has links to other nodes.

For example, for a linear structure we might use a node
class like this:
public class Node {
 int data;
 Node next;

 public Node() {
 ...
 }
}
We can think of a Node as a box with 2 fields:

data next

The code

 p = new Node();

 p.data = 25;

 q = new Node();

 q.data = 37;

 p.next = q;

creates the following structure:

 25 37

p q

The code
 head = new Node();
 p = head;
 q = new Node();
 q.data = 25;
 p.next = q;
 p = q;
 q = new Node();
 q.data = 37;
 p.next = q;
 p = q;

creates the following structure:

 25 37

p, q head

If we now say
 q = new Node();
 q.data = 49;
the picture becomes

 25 37

p head q

The statement
 p.next = q;
links p's box to q's box

 25 37

p head q

49

49

 25 37

head p, q

49

The statement
 p = q;
doesn't alter the nodes at all, but it makes
variable p refer to the same box as variable q:

Of course, we can keep going; there is no limit to the
number of nodes you can construct and link together.

Here is an example of a circular structure using
the same Node class.

We start off

 head = new Node();

 p = head;

p, head

The code
 q = new Node();
 q.data = 3;
makes this:

p, head q

3

We now set some links. First
 p.next = q;
 p = q;

head p,q
3

We now say
 q.next = head.next;
Since head.next is currently the same node as q, this makes q
point to itself:

head p,q

3

Now do these four statements again (with new data):

 q = new Node();
 q.data = 5;
 p.next = q;
 q.next = head.next;

head p

3

q

5

Two more statements complete the cycle:
 p = q;
 q.next = head.next;

head

3

p, q

5

Once more. First we make a new node, put data in it, and
connect our structure to it:

 q = new Node();
 q.data = 7;
 p.next = q

q is now the last box in the list; we make it point back
around at the first:
 q.next = head.next;
 p = q;

head

3

5

7

p, q

Note the role of the "head" node in these
examples. It is a node with no data whose only
role is to point at a feature of the structure,
which in these examples is the first node of the
structure. Such a node is called a "sentinel".

Good use of sentinels is one of the keys to
successful programming with linked structures.
Among other things, they can help you avoid
special cases, a likely source of bugs.

For example, suppose you are making a simple
linked list. Here are pictures of an empty list and a
list with two data values:

head, tail

head tail

17 43

In either case the code to add a node with datum 25 at the
end of the list is
 q = new Node();
 q.data = 25;
 tail.next = q;
 tail = q;

If we want to add a node with datum 16 at the start of the list
there is a special case to worry about, because if the list is
initially empty we will need to update the variable tail:

 q = new Node();
 q.data = 16;
 if (head==tail) { /* the list was empty */
 tail = q;
 head.next = q;
 }
 else {
 q.next = head.next;
 head.next = q;
 }

You should form the habit of always drawing
pictures of your linked structures and using
those pictures as a guide to your coding. If the
picture works your code will work.

Now, why do we do this (other than it is great
fun)??

For one thing, this gives us natural
implementations of trees and graphs and other
non-linear structures that aren't easy to model
in other ways.

Sometimes, when we are dealing with large
amounts of data, linked structures can be
implemented more efficiently than array-based
or ArrayList-based structures.

For example, suppose we have a queue with n
elements based on an ArrayList.

How would you estimate the worst-case running
time of the enqueue() and dequeue()
operations?

With a good linked structure they are both O(1).

Here is a picture for a Stack structure

data

data

data

data

top

bottom

How would you initialize or construct a Stack? How
would you write Push(), Pop(), Top() and IsEmpty()??

Here is a picture of a Queue structure:

data data data

head last

How would you construct an empty Queue, and write
Enqueue(), Dequeue(), Front() and IsEmpty() to go with
this picture?

