
Quicksort



MergeSort, while it is clearly superior to the 
O(n2) sorting algorithms, suffers from two flaws

• the need to pass an additional temp array 
to the sorting algorithm.  This is a pain at 
anytime, and could be a major problem if 
the array you are sorting is so big that you 
have trouble allocating another array of the 
same size.

• all of the copying back and forth between 
the data array and the temp array.



Quicksort is another divide-and-conquer 
algorithm that makes up for these deficiencies.   
You must be careful implementing QuickSort; 
small changes in the code can lead to incorrect 
sorts.  When implemented correctly it is one of 
the best sorting algorithms known.



Quicksort was invented by the British computer 
scientist Tony Hoare in 1960.  His original 
implementation was in Fortran and the code was 
so complex most people couldn't follow it.  Once 
recursion became available (in ALGOL 60) Hoare's 
recursive version was so simple most people 
didn't take it seriously. 



Quicksort was a featured part of two very 
important standard systems: it was a C-language 
library function in the original Unix 
implementation, and it was the sorting algorithm 
used in the original Java implementation.  



The idea behind QuickSort is simple.  To sort the 
elements of array A between indices first and last:

a) Choose one of the elements of the array to be the 
"pivot" value.  The algorithm works correctly 
regardless of which element you choose.

b) Rearrange the array so that elements that are less 
than the pivot come before it, and the elements 
that are greater than or equal to the pivot come 
after it.  The pivot must then be in its final 
location.  Suppose that is at index i.

c) Recursively sort the elements between first and   
i-1, and the elements between i+1 and last.



If there are n elements in the list the rearranging 
can be done in one pass with at most n steps.  

Note that while the algorithm will correctly sort 
regardless of which pivot value is chosen, the 
choice of pivot does make a difference.



Suppose the pivot value we choose happens to be 
the lowest element.  Then one of the recursive 
calls gets an array with no elements and the other 
gets all but one of the elements.  If the array 
happens to be already sorted and we choose the 
leftmost entry to be the pivot, this will happen at 
each step and we end up doing n recursive calls, 
sorting n elements, (n-1) elements, (n-2) 
elements, and so forth element.  The partitioning 
process takes n + (n-1) + (n-2)  + ... steps, which 
altogether gets us O(n2) steps.



So in the worst case QuickSort is O(n2).  If that was 
the end of the story we wouldn't be interested in 
it.



Think about the more typical case -- unless we are 
really unlucky, most of the time the pivot value 
should be around the middle of the data. This 
means that the recursive calls will each be to 
about half of the data.  Just as with MergeSort, we 
would expect QuickSort to run in time O(n*log(n) ) 
in the typical case.  Even better than MergeSort, 
QuickSort doesn't have to copy all of the data on 
each step.  In practice QuickSort tends to run 
significantly faster than MergeSort on typical data.



There are some things we can do to guard against 
especially unfavorable cases.   Sorted, reverse-
sorted, and nearly-sorted data all occur more often 
than you might think; using the first or last element 
of the list as the pivot doesn't do well in these 
cases.  An easy remedy for this is to use the middle 
of the array as the pivot value.  Some authors 
recommend taking the median of the left end, the 
right end, and the middle value.   Steps like this 
don't avoid the worst-case O(n2) behavior, but they 
insure that the algorithm reaches its worst case 
only in very specific and unlikely situations.



The partition step of the algorithm needs to be coded 
carefully but the idea behind it is easy.  

Suppose we start with the following data and choose 
as the pivot the middle value:

[ 23  3  9  7  14 8  7  12 6]

Start by interchanging the pivot with the last 
element, so it is out of the way.  Let i and j be the first 
and last indices in the array

pivot



[ 23  3  9  7  6 8  7  12 14]

pivoti j

Next, we increase i and decrease j until i is 
the index of a value greater than the pivot 
and j is the index of a value less than the 
pivot: [ 23  3  9  7  6 8  7  12 14]

i j pivot

Now swap the entries at indexes i and j:

[ 12  3  9  7  6 8  7  23 14]

i j pivot



We repeat this step until i and j cross.  For this 
example that happens immediately, since all of 
the elements with index less than j are less than 
the pivot:

i j pivot

[ 12  3  9  7  6 8  7  23 14]



We swap the element at index i with the pivot (in 
the last entry) and recursively sort the portion of 
the array before index i and the portion of the 
array after index i.  The latter is only one element, 
so there is nothing to do.  For the portion before i
we have:



[ 12  3  9  7  6 8  7             14  23]

pivot

[ 12  3  7  7  6 8  9             14  23]

i j pivot
We move i and j towards each other until 
the value at index i is greater than the pivot 
and the value at j is less:

[ 12  3  7  7  6 8  9             14  23]

i j pivot



We swap the values at i and j:
[  8  3  7 7   6  12  9             14  23]

i j pivot

Again we move indices i and j inward; they cross at the 
element 12, which we swap with the pivot element:

[ 8  3  7  7  6  9  12             14  23]

i j

We repeat this to sort the two portions [8 3 7 7 6] and   
[12]

On the next slide is the complete code for 
QuickSort:



private static <E extends Comparable<? super E>> void  
QuickSort(E[] A, int first, int last) {

if (first < last) {
int mid = (first+last)/2;
E pivot = A[mid];
swap(A, mid, last);
int i = first; 
int j = last;
while ( i < j) {

while (A[i].compareTo(pivot) < 0)
i += 1;

while (i < j && pivot.compareTo(A[j]) <= 0)
j -= 1;

if (i < j) 
swap(A, i, j);

}
swap(A, last, i);
QuickSort(A, first, i-1);
QuickSort(A, i+1, last);

}
}


