Clustering

Suppose we have a collection of n points in space and
we want to partition them into k clusters.

* One way to think about clusters is to choose k
centers in such a way that every point is as close
as possible to one of those centers.

* Another way is to choose clusters so that the
distance between any two points in different
clusters is as great as possible.

There are algorithms for each of these approaches, and
for still other approaches to clustering, which is a very
important practical problem for many applications. The
next algorithm focuses on the second approach.

We will formalize this by defining the distance between
two different clusters as the shortest distance between
two points, one of which is in each cluster. We can define
the spacing of a set of clusters to be the minimum
distance between any two clusters. We want to find a
partitioning of our points into k clusters whose spacing is
as large as possible

Here is an intuitive algorithm. If points are close
together we want them to be in the same cluster so
consider pairs of points in order from closest to farthest
apart. If the two close-together points are in the same
cluster ignore them because they are already grouped
together. If they are in different clusters merge the
clusters. Continue this until there are k clusters left.

Note that this is exactly what Kruskal's Minimum Spanning
Tree algorithm would do on the graph where every point is
connected to every other point with an edge whose cost is
the distance between the points. We stop the Kruskal
algorithm when there are k disjoint sets remaining.

From our analysis of Kruskal's algorithm we know the
running time is O(|E| log(|V])) = O(n? log(n)). This
sounds large, but remember that it takes time O(n?) to just
find the distance between each pair of points.

For example, consider the following points:

Here are their distances apart:

® o

O -
Y 6

We start with 5 clusters. Each time we choose an edge
we reduce the number of clusters by 1. If we want 2
clusters we need to choose 3 edges: the three shortest
are A-B, C-D. and D-E. The resulting clusters are {A,B},
and {C,D,E}.

| B0 O
(0]
w

5
S
7
A

How do we know the clusters this algorithm produces
are maximally spaced?

Let d be the cost of the last edge added by Kruskal. The
spacing of the Kruskal clusters can't be less than d, for if it
was we would have chosen different sets of points to
merge. Consider any other way to partition the points into
k clusters. That clustering must have some pair of points
(p1, p2) in different clusters and the Kruskal algorithm
would put in the same cluster. This means that there is a
path fromp1l to p2 where each edge costs no more than d.
One of these edges must join points in two different
clusters in the alternative grouping, so its spacing can't be
greater than d. This means that the alternative clustering
can't have larger spacing than the Kruskal clustering.

