How Fast Can We Sort?
It is hard to do something we would call sorting without looking at the data, so a lower bound for sorting n data elements is $\Omega(n)$.

We can even achieve this lower bound. Suppose we have a list of n numbers (where n is very large) that are all between 0 and 9. Take an array Counts of 10 entries, all initialized to 0 and iterate through the numbers. Each time you see a 6 increment Counts[6]; each time you see a 9 increment Counts[9], and so forth. Then replace the original data by Counts[0] 0's, Counts[1] 1's and so forth in that order:
// This assumes every element of A is between 0 and 9.
public void Sort(int[] A) {
 int[] Counts = new int[10];

 for (int i = 0; i < A.length; i++)
 Counts[A[i]] += 1;

 p = 0;
 for (int j = 0; j <= 9; j++) {
 for (int k = 0; k < Counts[j]; k++) {
 A[p] = j;
 p += 1;
 }
 }
}
This is certainly order n -- it consists of two passes that each look at each data item once.

This algorithm goes by various names; many people call it BucketSort. But somehow it seems like cheating; this isn't what we usually mean by sorting.

More typically, we are interested in sorting algorithms that work by comparing the data elements; if you don't know anything in advance about the data this is your only option.

We will show that a lower bound for how many comparisons such algorithms make is $\Omega(n \cdot \log(n))$.
Although we wouldn't code it this way, we can think of any algorithm that sorts by comparing data elements as asking a sequence of questions that compare different elements, sometimes making assignments that interchange elements. Which elements get compared depends on the answers to previous questions, so this forms a Decision Tree.

For example, here is a decision tree for SelectionSort for sorting a list of 3 items. Branches to the left reflect NO decisions on the previous questions; branches to the right reflect YES.
Note that the decision tree must have at least $n!$ leaves since there are $n!$ different orderings of n elements and there must be at least one leaf for each possible ordering.
It is easy to see that

Theorem: A binary tree of height h can have no more than 2^h leaves.

If you stand that on its head it says

Theorem: A binary tree with n leaves must have height at least $\log(n)$.

Since our decision trees have $n!$ leaves and their heights are the maximum number of comparisons needed to sort any particular ordering of the data we can say that the sorting algorithms all do at least $\log(n!)$ comparison.
So how big is $\log(n!)$??

$\log(n!) = \log(n) + \log(n-1) + \log(n-2) + \ldots + \log(1)$

The first $n/2$ terms: $\log(n)$, $\log(n-1)$ etc. are all $\geq \log(n/2)$.

So

$\log(n!) \geq (n/2)*\log(n/2)$

$= (n/2)*[\log(n) - 1]$

$= (n/2)*\log(n) - n/2$

$= \Theta(n*\log(n))$
Altogether, we can conclude that:

Any algorithm that sorts by comparing data elements has to do at least $\Omega(n \cdot \log(n))$ comparisons and that a lower bound for its running time is $\Omega(n \cdot \log(n))$.

This semester we have talked about BubbleSort, SelectionSort, and InsertionSort, which are all $O(n^2)$, and MergeSort, QuickSort and HeapSort, which are all $O(n \cdot \log(n))$. We know there is no algorithm with a smaller order of growth.
There are a few other sorting algorithms. A famous one is called ShellSort after its inventor, Donald Shell; it runs slightly faster than QuickSort on real-world data. Most people feel that QuickSort is good enough for almost any situation.