How Fast Can We Sort?
It is hard to do something we would call sorting without looking at the data, so a lower bound for sorting n data elements is $\Omega(n)$.

We can even achieve this lower bound. Suppose we have a list of n numbers (where n is very large) that are all between 0 and 9. Take an array `Counts` of 10 entries, all initialized to 0 and iterate through the numbers. Each time you see a 6 increment `Counts[6]`; each time you see a 9 increment `Counts[9]`, and so forth. Then replace the original data by `Counts[0]` 0's, `Counts[1]` 1's and so forth in that order:
public void Sort(int[] A) {
 int[] Counts = new int[10];

 for (int i = 0; i < A.length; i++)
 Counts[A[i]] += 1;

 p = 0;
 for (int j = 0; j <= 9; j++)
 for (int k = 0; k < Counts[j]; k++)
 A[p] = j;
 p += 1;
}
This is certainly order n -- it consists of two passes that each look at each data item once.

This algorithm goes by various names; many people call it BucketSort. But somehow it seems like cheating; this isn't what we usually mean by sorting.
More typically, we are interested in sorting algorithms that work by comparing the data elements; if you don't know anything in advance about the data this is your only option.

We will show that a lower bound for how many comparisons such algorithms make is proportional to $n \times \log(n)$.
Although we wouldn't code it this way, we can think of any algorithm that sorts by comparing data elements as asking a sequence of questions that compare different elements, sometimes making assignments that interchange elements. Which elements get compared depends on the answers to previous questions, so this forms a *Decision Tree*.

For example, here is a decision tree for SelectionSort for sorting a list of 3 items. Branches to the left reflect NO decisions on the previous questions; branches to the right reflect YES.

Diagram:

- **Root:**
 - **Question:** $[a \ b \ c]$ is $A[0] < A[1]$?
 - **Branches:**
 - **Left:**
 - **Sub-Branches:**
 - **Left:** $A[0]$<->$A[1]$
 - **Sub-Branches:**
 - $[c \ a \ b]$
 - $[c \ b \ a]$
 - $[b \ c \ a]$
 - $[b \ a \ c]$
 - $[b \ a \ c]$
 - $[c \ a \ b]$
 - $[b \ c \ a]$
 - $[b \ a \ c]$
 - **Sub-Branches:**
 - $[c \ b \ a]$
 - $[b \ c \ a]$
 - $[a \ c \ b]$
 - $[a \ b \ c]$
 - $[c \ b \ a]$
 - $[b \ a \ c]$
 - $[a \ c \ b]$
 - $[a \ b \ c]$
 - **Right:**
 - $[a \ b \ c]$ is $a[0] < a[2]$?
 - **Left:**
 - **Sub-Branches:**
 - $[c \ a \ b]$
 - $[c \ b \ a]$
 - $[b \ a \ c]$
 - $[a \ c \ b]$
 - $[a \ b \ c]$
 - $[a \ c \ b]$
 - $[a \ b \ c]$
 - $[a \ c \ b]$
 - $[a \ b \ c]$

Here is a similar decision tree for BubbleSort:

```
[a b c] is A[0] < A[1]?
```

- **N**
 - [b a c]
 - **Y**
 - [b c a] is A[0] < A[1]?
 - [b c a]
 - [b c a]
 - [a b c]
 - [b a c]
 - [a b c] is A[0] < A[1]?
 - [c b a]
 - [b c a]
 - [a b c]
 - [b a c]
 - [a b c] is A[0] < A[1]?
 - [a c b]
 - [b a c]
 - [a c b]
 - [a b c]
Note that the decision tree must have at least $n!$ leaves since there are $n!$ different orderings of n elements and there must be at least one leaf for each possible ordering.
It is easy to see that

Theorem: A binary tree of height h can have no more than 2^h leaves.

For example, here are some trees of height 2:

- 2 leaves
- 3 leaves
- 4 leaves
It is easy to see that

Theorem: A binary tree of height h can have no more than 2^h leaves.

If you stand that on its head it says

Theorem: A binary tree with k leaves must have height at least $\log(k)$.

Since our decision trees have $n!$ leaves and their heights are the maximum number of comparisons needed to sort any particular ordering of the data we can say that the sorting algorithms all do at least $\log(n!)$ comparison.
So how big is log(n!)??

\[\log(n!) = \log(n) + \log(n-1) + \log(n-2) + \ldots + \log(1) \]

The first \(n/2 \) terms: \(\log(n) \), \(\log(n-1) \) etc. are all \(\geq \log(n/2) \).

So
\[\log(n!) \geq (n/2) \times \log(n/2) \]
\[= (n/2) \times [\log(n) - 1] \]
and this is at least a constant times \(n \times \log(n) \)
Altogether, we can conclude that:

Any algorithm that sorts by comparing data elements has to do at least proportional to $n \cdot \log(n)$ comparisons and its running time will grow at least as fast as $n \cdot \log(n)$.
This semester we have talked about BubbleSort, SelectionSort, and InsertionSort, which are all $O(n^2)$, and MergeSort, and QuickSort, which are $O(n\log(n))$. Related to our work on Lab 7 will be another algorithm called HeapSort. It is also $O(n\log(n))$. There are lots of other sorting algorithms, but we know there is no algorithm with a smaller order of growth.
Most people feel that QuickSort is good enough for almost any situation.