Map and Apply
Map and Apply are two very powerful Scheme tools that are frequently misunderstood by students.

Map in general can take a function of n-arguments and n lists, but it is easier to think of it if we have a function of one argument and a single list of values. The result of \(\text{map } f \)

\[
\text{map } f \text{ lat}
\]

is a new list, whose first element is \(f \text{ (car lat)} \), whose second element is \(f \text{ (cadr lat)} \) and so forth. The ith element of the returned list is the result of applying \(f \) to the ith element of lat.
For example,

\[
\text{(map (lambda (x) (+ x 2)) '(1 2 3 4 5))}
\]

returns

\[
(3 4 5 6 7)
\]

The second argument to map does not need to be a flat list; map takes as an argument each element at the top level of the list.

For example,

\[
\text{(map car '((1 2) (3 (4 5)) (6)))}
\]

returns

\[
(1 3 6)
\]
Map in general can take a function of n arguments and n argument-lists, all of the same length. The result of

$$(\text{map } f \text{ arg1 arg2 ... argn })$$

is a new list whose ith element is the result of applying f to the ith element of each of the argument lists

For example

$$(\text{map (lambda (x y) (+ x y)) '(1 2 3) '(4 5 6)})$$

returns

$$(5 7 9)$$
Map has all kinds of useful applications. For example, suppose we have a binding list in a let expression:

\[
([x \ 3] \ [y \ 45] \ [z \ 123])
\]

We can get the list of symbols being bound, \((x \ y \ z)\), from

\[
(map \ car \ '([x \ 3] \ [y \ 45] \ [z \ 123]))
\]

and the list of values being bound from

\[
(map \ cadr \ '([x \ 3] \ [y \ 45] \ [z \ 123]))
\]
If you write the factorial function

```
(define fact
  (lambda (x)
    (if (= x 1) 1 (* x (fact (- x 1)))))
)
```

and what to check it out quickly, you can do so with

```
(map fact '(1 2 3 4 5 6 7))
```

and get

```
(1 2 6 24 120 720 5040)
```
Apply has a simpler definition, but I find that students have a harder time thinking about it. If \(f \) is a function of \(n \) arguments and \(L \) is a list of \(n \) elements,
\[
\text{(apply } f \ L)
\]
is the result of calling \(f \) with the elements of \(L \) as its arguments.

For example, \((+ (2 3))\) makes no sense but \((\text{apply } + (2 3))\) does make sense and has the value 5, as you would expect.
We can define a procedure that finds the distance of a 2D point from the origin:

```
(define dist
  (lambda (x y)
    (sqrt (+ (* x x) (* y y))))
)
```

`(dist 3 4)` correctly returns 5.

However, if we have a point p defined as a pair: (x y) we can't use dist to find its distance from the origin because dist wants 2 separate arguments. However we can do this with apply:

```
(apply dist p)
```
Max is a pre-defined Scheme function that takes any number of numerical arguments and returns the largest of its arguments. For example,

```scheme
(max 2 5 6 3 9 5 6)
```
returns 9.

We might want to find the maximum value of a lat; we can get this with

```scheme
(apply max lat)
```
Map and apply are often used together to recurse on a structured list.

For example, here is a function that finds the largest number in a structured list of numbers, such as \((2 \ (4 \ 5 \ (6)) \ 3 \ (4 \ (5)))\):

\[
(\text{define largest}
 (\lambda \ (L)
 (\text{cond}
 [(\text{null?} \ L) \ -1]
 [(\text{number?} \ L) \ L]
 [\text{else} \ (\text{apply max} \ (\text{map largest} \ L))])))
\]
Here is a function that counts the number of atoms in an S-expression. Remember that an S-expression can be null, an atom, or a list:

```
(define count
  (lambda (L)
    (cond
     [(null? L) 0]
     [(not (pair? L)) 1] ; this means L is an atom
     [else (apply + (map count L))])))
```