The Y-Combinator in Scheme
Programming language theorists usually develop the Y-Combinator as a "fixed-point operator", so that for any expression X the result $(Y X)$ is a fixed-point of X, meaning that $(X (Y X)) = (Y X)$. Unless you have a lot of experience with the right sort of mathematics it is hard to see the implications of that, so we will develop it in a different way.

Our goal will be to find a way to write recursive functions in the pure lambda-calculus. At first glance that is impossible: how can a lambda expression "call itself" if it doesn't have a name?? It turns out that the Y-Combinator is the solution to this puzzle, but it will take some work to get there.
We need a recursive function to work with. We could use almost anything, but a particularly simple target is the recursive length function. In Scheme this is

```scheme
(define length (lambda (lat)
    (cond
        [(null? lat) 0]
        [else (+ 1 (length (cdr lat)))])))))
```

We are looking for a way to write this in the lambda-calculus without assigning names to anything.
First, here is a function that loops forever:

```
(define eternity (lambda (x) (eternity x)))
```

There is no problem making this definition, but if we ever call function `eternity` with any argument it will recurse forever.
Here is a function related to the length function:

\[
\text{(define L (lambda (f)}
\text{ (lambda (lat)}
\text{ (cond}
\text{ [(null? lat) 0]}
\text{ [else (+ 1 (f (cdr lat)))]})])})
\]

Here are some functions we can get from L:

\[
\text{(define L0 (L eternity))}
\]

(L0 null) is 0; (L0 lat) runs forever if lat isn't null
(define L1 (L L0)) == (L (L eternity))
(L1 lat) is the correct length of lat if lat has 0 or 1 elements; it fails if lat has more than 1 elements
 (define L2 (L L1)) == (L (L (L eternity))))
 (define L3 (L L2))
 (define L4 (L L3))
 etc.
Function Ln finds the length of all lats that have no more than n elements.

We are getting somewhere, but we would need L∞ to find the length of all lats.
Here is a slightly more complicated approach:

\[
\text{define M1}
\]
\[
(\text{let} \; ([g \; (\lambda (f)
\quad (\lambda (lat)
\quad \text{(cond}
\quad \quad \text{[(null? lat) 0]}
\quad \quad \text{[else (+ 1 ((f eternity) (cdr lat)))]})
\quad \text{)])}
\quad (g \; g))
\]

Note that \(g\) \(\text{eternity}\) is

\[
(\lambda (lat)
\quad \text{(cond}
\quad \quad \text{[(null? lat) 0]}
\quad \quad \text{[else (+ 1 ((eternity eternity) (cdr lat)))]})
\quad)
\]

which is functionally the same as \(L0\)
and \((g \ g)\) is

\[
\text{(lambda (lat)}
\text{(cond}
\text{[(null? lat) 0]}
\text{[else (+ 1 ((g eternity) (cdr lat)))]])}
\]

This is the same as \((L \ L0)\). So M1 is a stand-alone function that is equivalent to L1. We are getting somewhere.
(define N
 (let ([h (lambda (f)
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 ((f f) (cdr lat)))]))])
 (h h)))

N is (h h), which is
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 ((h h) (cdr lat)))]))

That last line could be written [else (+ 1 (N (cdr lat)))]
so N is exactly the recursive length function.
Don't allow the let-expression in the definition of N throw you off.

(let ([a b]) exp) is completely equivalent to ((lambda (a) exp) b) so we could rewrite N as a pure lambda-expression:

(define N
 ((lambda (h) (h h))
 (lambda (f)
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 ((f f) (cdr lat)))]))))))
We can write other recursive functions in this style:

The member? function is

```scheme
(define member?
  (let ([e (lambda (f)
            (lambda (a lat)
              (cond
                [(null? lat) #f]
                [(eq? a (car latl)) #t]
                [else ( (f f) a (cdr lat))])))

  (e e)))
```
The factorial function is

```
(define Factorial
  (let ([c (lambda (f)
            (lambda (n)
                (cond
                  [(= 0 n) 1]
                  [else (* n ( (f f) (- n 1)))]))))
    (c c)))
```
There is a pattern to coding like this. Consider the following which is an encoding of our friend the Y-Combinator:

\[
\text{(define Y (lambda (name)} \\
\quad (\text{let ([a (lambda (f) \\
\quad \quad (name (lambda (x) ((f f) x))))})])
\quad (a a))))
\]

Then \((\text{Y (lambda(s)}} \quad (\text{lambda (lat) \\
\quad (cond \\
\quad \quad [(null? lat) 0] \\
\quad \quad [else (+ 1 (s (cdr lat)))])))))
\]

is the length function
To see why, note that
\[
(Y \ (\lambda (s) \ (\lambda (\text{lat}) \ (\text{cond} \ ((\text{null?} \ \text{lat}) \ 0) \ [\text{else} \ (+ \ 1 \ (s \ (\text{cdr} \ \text{lat}))))])))
\]
is
\[
(\text{let} \ ((\text{a} \ (\lambda (f) \ (\lambda (\text{lat}) \ (\text{cond} \ ((\text{null?} \ \text{lat}) \ 0) \ [\text{else} \ (+ \ 1 \ ((f \ f) \ (\text{cdr} \ \text{lat}))))]))) \ (\text{a} \ \text{a}))
\]
which is equivalent to
\[
(\text{let} \ ((\text{a} \ (\lambda (f) \ (\lambda (\text{lat}) \ (\text{cond} \ ((\text{null?} \ \text{lat}) \ 0) \ [\text{else} \ (+ \ 1 \ ((f \ f) \ (\text{cdr} \ \text{lat}))))]))) \ (\text{a} \ \text{a}))
and this last expression is the same as N.
Similarly,

\[
(Y \ (\lambda (s) \\
 (\lambda (n) \\
 (\text{cond} \\
 \[(= 0 \ n) \ 1 \] \\
 [\text{else} \ (* \ n \ (s \ (- \ n \ 1)))]\)))
\]

is the factorial function.

In general, if you take the definition of any recursive function of one variable, wrap a \((\lambda (s) \ ...))\) around it and use \(s\) as the name of the function for the recursive call, \(Y\) takes this expression and turns it into a recursive function.
Y converts expressions into recursive functions of 1 variable. If we define Y2 as

```
(define Y2 (lambda (name)
    (let ([a (lambda (f)
        (name (lambda (x y) ((f f) x y))))]
    (a a)))))
```

then Y2 makes recursive functions of 2 variables.
For example

\[
(Y2 \ (\lambda \ (s) \\
\quad (\lambda \ (a \ \text{lat}) \\
\quad \quad (\text{cond} \\
\quad \quad \quad [(\text{null? lat}) \ \text{null}] \\
\quad \quad \quad [(eq? a \ (\text{car lat})) \ (\text{cdr lat})] \\
\quad \quad \quad [\text{else} \ (\text{cons} \ (\text{car lat}) \ (s \ a \ (\text{cdr lat})))])))
\]

is the rember function and

\[
(Y2 \ (\lambda \ (s) \\
\quad (\lambda \ (a \ \text{lat}) \\
\quad \quad (\text{cond} \\
\quad \quad \quad [(\text{null? lat}) \ \text{null}] \\
\quad \quad \quad [(eq? a \ (\text{car lat})) \ (s \ a \ (\text{cdr lat}))] \\
\quad \quad \quad [\text{else} \ (\text{cons} \ (\text{car lat}) \ (s \ a \ (\text{cdr lat})))])))
\]

is the rember-all function
The Y-Combinator shows that all recursive functions can be written in the pure lambda-calculus. Using this fact, it can be shown that the lambda-calculus is *Turing Complete*: Turing Machines, and hence any algorithm, can be expressed in the lambda-calculus. We have seen an algorithm for expressing any lambda-expression in terms of the combinators S and K. This means not only that the Combinatorial Calculus is Turing Complete, but that all possible algorithms can be expressed as combinations of two simple combinators: S and K. This is remarkable.

We have also shown that recursion does not require functions to be given names. Anonymous functions can be recursive! Who knew?