Sets
We will look at several ways to implement sets. We generally want sets to have unique elements -- an object \(x \) either is or is not an element of set \(S \); it can't be an element of \(S \) more than once.

We will give 4 methods for each implementation --

- \((\text{make-set lat})\) which converts a simple list of elements into a set.
- \((\text{element? } x \ s)\) that returns \#t or \#f according to whether \(x \) is an element of set \(s \).
- \((\text{union set1 set2})\)
- \((\text{intersection set1 set2})\)
Version 1: We represent the set as a list of unique items; for (make-set lat) we only need to remove the duplicate entries of lat. Union and Intersection are easy.
Version II: We represent a set by a function that says if a particular element is a member of that set.
Version III: We represent a set by a Binary Search Tree that contains its elements. Note that here we need element values that can be compared; we will assume our elements are numbers.
Now, what can you say about the three implementations?

• Which is more efficient?
• Which is easier to implement?
• Are there things you would like to do with sets that some implementations don't support?