Map and Apply
Map and Apply are two very powerful Scheme tools that are frequently misunderstood by students.

Map in general can take a function of n-arguments and n lists, but it is easier to think of it if we have a function of one argument and a single list of values. The result of

`\(\text{map} \ f \ \text{lat} \)`

is a new list, whose first element is \((f \ (\text{car} \ \text{lat})) \), whose second element is \((f \ (\text{cadr} \ \text{lat})) \) and so forth. The ith element of the returned list is the result of applying f to the ith element of lat.
For example,

\begin{align*}
&(\text{map (lambda (x) (+ x 2)) '(1 2 3 4 5)}) \\
&\text{returns} \\
&\quad (3 4 5 6 7)
\end{align*}

The second argument to map does not need to be a flat list; map takes as an argument each element at the top level of the list.

For example,

\begin{align*}
&(\text{map car '((1 2) (3 (4 5)) (6)))} \\
&\text{returns} \\
&\quad (1 3 6)
\end{align*}
Map in general can take a function of \(n \) arguments and \(n \) argument-lists, all of the same length. The result of

\[
\text{map } f \ arg1 \ arg2 \ldots \ argn
\]

is a new list whose \(i \)th element is the result of applying \(f \) to the \(i \)th element of each of the argument lists.

For example

\[
\text{map } (\text{lambda} \ (x \ y) \ (+ \ x \ y)) '(1 2 3) '(4 5 6)
\]

returns

\[(5 7 9)\]
Map has all kinds of useful applications. For example, suppose we have a binding list in a let expression:

\((\{x\,3\} \{y\,45\} \{z\,123\})\)

We can get the list of symbols being bound, \((x\ y\ z)\), from

\((\text{map car } '(\{x\,3\} \{y\,45\} \{z\,123\}))\)

and the list of values being bound from

\((\text{map cadr } '(\{x\,3\} \{y\,45\} \{z\,123\}))\)
If you write the factorial function

\[
\begin{align*}
\text{(define fact} & \\quad \text{(lambda (x)} \\
& \quad \quad \quad \text{(if (= x 1) 1 (* x (fact (- x 1))))))
\end{align*}
\]

and what to check it out quickly, you can do so with

\[
\text{(map fact '(1 2 3 4 5 6 7))}
\]

and get

\[
(1 2 6 24 120 720 5040)
\]
Apply has a simpler definition, but I find that students have a harder time thinking about it. If f is a function of n arguments and L is a list of n elements,

$$(\text{apply } f \ L)$$

is the result of calling f with the elements of L as its arguments.

For example, $(+ \ '(2\ 3))$ makes no sense but $(\text{apply } + \ '(2\ 3))$ does make sense and has the value 5, as you would expect.
We can define a procedure that finds the distance of a 2D point from the origin:

\[
\text{(define dist}
\begin{array}{l}
\text{(lambda (x y)} \\
\text{\quad (sqrt (+ (* x x) (* y y))))}
\end{array}
\text{)}
\]

\text{(dist 3 4) correctly returns 5.}

However, if we have a point p defined as a pair: (x y) we can't use dist to find its distance from the origin because dist wants 2 separate arguments. However we can do this with apply:

\text{(apply dist p)}
Max is a pre-defined Scheme function that takes any number of numerical arguments and returns the largest of its arguments. For example,

\[(\text{max } 2 \ 5 \ 6 \ 3 \ 9 \ 5 \ 6)\]

returns 9.

We might want to find the maximum value of a lat; we can get this with

\[(\text{apply max lat})\]
Map and apply are often used together to recurse on a structured list.

For example, here is a function that finds the largest number in a structured list of numbers, such as (2 (4 5 (6)) 3 (4 (5))):

```
(define largest
  (lambda (L)
    (cond
      [(null? L) -1]
      [(number? L) L]
      [else (apply max (map largest L))])))
```
Here is a function that counts the number of atoms in an S-expression. Remember that an S-expression can be null, an atom, or a list:

```
(define count
  (lambda (L)
    (cond
      [(null? L) 0]
      [(not (pair? L)) 1] ; this means L is an atom
      [else (apply + (map count L))])))
```