The Y-Combinator in Scheme
Programming language theorists usually develop the Y-Combinator as a "fixed-point operator", so that for any expression X the result $(Y X)$ is a fixed-point of X, meaning that $(X (Y X)) = (Y X)$. Unless you have a lot of experience with the right sort of mathematics it is hard to see the implications of that, so we will develop it in a different way.

Our goal will be to find a way to write recursive functions in the pure lambda-calculus. At first glance that is impossible: how can a lambda expression "call itself" if it doesn't have a name?? It turns out that the Y-Combinator is the solution to this puzzle, but it will take some work to get there.
We need a recursive function to work with. We could use almost anything, but a particularly simple target is the recursive length function. In Scheme this is

```
(define length (lambda (lat)
  (cond
    [(null? lat) 0]
    [else (+ 1 (length (cdr lat)))])))
```

We are looking for a way to write this in the lambda-calculus without assigning names to anything.
First, here is a function that loops forever:

```
(define eternity (lambda (x) (eternity x)))
```

There is no problem making this definition, but if we ever call function eternity with any argument it will recurse forever.
Here is a function related to the length function:

\[
\text{(define } L \text{ (lambda (f)} \\
\hspace{1cm} \text{(lambda (lat)} \\
\hspace{2cm} \text{(cond} \\
\hspace{3cm} [\text{(null? lat) 0}] \\
\hspace{3cm} [\text{else (+ 1 (f (cdr lat))))}])))
\]

Here are some functions we can get from L:

\[
\text{(define } L0 \text{ (L eternity)} \\
(L0 \text{ null) is 0; (L0 lat) runs forever if lat isn't null)}
\]
(define L1 (L L0)) == (L (L eternity))
(L1 lat) is the correct length of lat if lat has 0 or 1 elements; it fails if lat has more than 1 elements
 (define L2 (L L1)) == (L (L (L eternity)))
 (define L3 (L L2))
 (define L4 (L L3))
 etc.
Function Ln finds the length of all lats that have no more than n elements.

We are getting somewhere, but we would need L∞ to find the length of all lats.
Here is a slightly more complicated approach:

\[
\text{(define M1}
\begin{align*}
&\text{(let ([g (lambda (f) }
&\quad (\text{lambda (lat) }}
&\quad \text{(cond}
&\quad \quad \text{[(null? lat) 0]}
&\quad \quad \text{[else (+ 1 ((f eternity) (cdr lat)))]})])
&\quad (g g))})
\end{align*}
\]

Note that (g eternity) is

\[
\text{(lambda (lat) }
\begin{align*}
&\text{(cond}
&\quad \text{[(null? lat) 0]}
&\quad \text{[else (+ 1 ((eternity eternity) (cdr lat)))]})
\end{align*}
\]

which is functionally the same as \(L_0 \)
and \((g \ g)\) is
\[
\text{(lambda (lat)}
\text{ (cond [null? lat} \text{ 0]} [else (+ 1 ((g eternity) (cdr lat)))]))
\]

This is the same as \((L \ L0)\). So M1 is a stand-alone function that is equivalent to L1. We are getting somewhere.
(define N
 (let ([h (lambda (f)
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 ((f f) (cdr lat))))]]))]
 (h h)))

N is (h h), which is
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 ((h h) (cdr lat))))]))

That last line could be written [else (+ 1 (N (cdr lat)))]
so N is exactly the recursive length function.
Don't allow the let-expression in the definition of N throw you off.

(let ([a b]) exp) is completely equivalent to ((lambda (a) exp) b) so we could rewrite N as a pure lambda-expression:

```
(define N
  ((lambda (h) (h h))
   (lambda (f)
     (lambda (lat)
       (cond
         [(null? lat) 0]
         [else (+ 1 ( (f f) (cdr lat)))])))))
```
We can write other recursive functions in this style:

The member? function is

```scheme
(define member?
  (let ([e (lambda (f)
                (lambda (a lat)
                  (cond
                    [(null? lat) #f]
                    [(eq? a (car lat)) #t]
                    [else ( (f f) a (cdr lat))]]))]
        (e e)))
)```
The factorial function is

(define Factorial
  (let ([c (lambda (f)
              (lambda (n)
                (cond
                  [(= 0 n) 1]  
                  [else (* n ( (f f) (- n 1))))]
              )]
          )
        )
      (c c)))
There is a pattern to coding like this. Consider the following which is an encoding of the Y-Combinator:

```
(define Y (lambda (name)
 (let ([a (lambda (f)
 (name (lambda (x) ((f f) x))))])
 (a a))))
```

Then

```
(Y (lambda(s)
 (lambda (lat)
 (cond
 [(null? lat) 0]
 [else (+ 1 (s (cdr lat)))])))
```

is the length function
To see why, note that

\[
(Y \ (\lambda (s) \\
    (\lambda (\text{lat}) \\
    (\text{cond} \\
        [(\text{null?} \ \text{lat}) \ 0] \\
        [\text{else} \ (+ \ 1 \ (s \ (\text{cdr} \ \text{lat})))]))))
\]

is

\[
(\text{let} \ ((a \ (\lambda (f) \\
                (\lambda (\text{lat}) \\
                (\text{cond} \\
                    [(\text{null?} \ \text{lat}) \ 0] \\
                    [\text{else} \ (+ \ 1 \ ((f \ f) \ (\text{cdr} \ \text{lat})))])))) \\
    (a \ a))
\]

which is equivalent to

\[
(\text{let} \ ((a \ (\lambda (f) \\
                (\lambda (\text{lat}) \\
                (\text{cond} \\
                    [(\text{null?} \ \text{lat}) \ 0] \\
                    [\text{else} \ (+ \ 1 \ ((f (f)) \ (\text{cdr} \ \text{lat})))])))) \\
    (a \ a))
and this last expression is the same as N.
Similarly,
\[(Y \text{ (lambda (s) )})\]
\[
\text{(lambda (n))}
\]
\[
\text{(cond}
\[
\text{[(= 0 n) 1]}
\]
\[
\text{[else (* n (s (- n 1)))]})]])
\]

is the factorial function.

In general, if you take the definition of any recursive function of one variable, wrap a (lambda (s) ...) around it and use s as the name of the function for the recursive call, Y takes this expression and turns it into a recursive function.
Y converts expressions into recursive functions of 1 variable. If we define Y2 as

```
(define Y2 (lambda (name)
 (let ([a (lambda (f)
 (name (lambda (x y) ((f f) x y))))])
 (a a))))
```

then Y2 makes recursive functions of 2 variables.
For example

\[(Y2 \text{(lambda}} (s)
  (\text{lambda}} (a \text{ lat})
  (\text{cond}
    ((null? \text{ lat}) \text{ null})
    ((eq? a (\text{car}} \text{ lat})) (\text{cdr}} \text{ lat})
    [else (cons (\text{car}} \text{ lat}) (\text{s}} a ((\text{cdr}} \text{ lat)))))
  ))))\]

is the rember function and

\[(Y2 \text{(lambda}} (s)
  (\text{lambda}} (a \text{ lat})
  (\text{cond}
    ((null? \text{ lat}) \text{ null})
    ((eq? a (\text{car}} \text{ lat})) (\text{\text{s}} a ((\text{cdr}} \text{ lat))])
    [else (cons (\text{car}} \text{ lat}) (\text{\text{s}} a ((\text{cdr}} \text{ lat})]])))\]

is the rember-all function
The Y-Combinator shows that all recursive functions can be written in the pure lambda-calculus. Using this fact, it can be shown that the lambda-calculus is *Turing Complete*: Turing Machines, and hence any algorithm, can be expressed in the lambda-calculus. We have seen an algorithm for expressing any lambda-expression in terms of the combinators S and K. This means not only that the Combinatorial Calculus is Turing Complete, but that all possible algorithms can be expressed as combinations of two simple combinators: S and K. This is remarkable.

We have also shown that recursion does not require functions to be given names. Anonymous functions can be recursive! Who knew?