1. Use fold to write \texttt{(replace old new lat)} which replaces each instance of atom \textit{old} with atom \textit{new} in \textit{lat}, a flat list of atoms.

 (define replace (lambda (old new lat)
 (fold (lambda (x y) (if (eq? x old)
 (cons new y)
 (cons x y)))
 null lat)))

2. Write \texttt{(replace* old new L)} which replaces each instance of \textit{old} with \textit{new} in the general list \textit{L}

 (define replace* (lambda (old new L)
 (cond
 [(null? L) null
 [(not (pair? L)) (if (eq? L old) new L)]
 [else (cons (replace* old new (car L))
 (replace* old new (cdr L)))])))

3. Write **Alternates lat** which returns a pair of lists, the first with the even-indexed elements of *lat* and the second with the odd-indexed elements. For example, (Alternates ‘(a b c d e f g)) returns ‘((a c e g) (b d f)).

Here’s one solution, using fold:

```
(define Alternates (lambda (lat)
    (fold (lambda (x y) (list (cons x (cadr y)) (car y))) (list null null) lat)))
```

Here’s another solution, using accumulator-style. This builds the lists backwards; if that bothers you use append rather than cons with the recursive call:

```
(define Alternates (lambda (lat a b)
    (cond
        [(null? lat) (list a b)]
        [(null? (cdr lat)) (list (cons (car lat) a) b)]
        [else (Alternates (cddr lat) (cons (car lat) a) (cons (cadr lat) b))))])
```

The most popular solution was this. Function H finds the even-numbered elements:

```
(define H (lambda (lat)
    (cond
        [(null? lat) null]
        [(null? (cdr lat)) (list (car lat))]
        [else (cons (car lat) (H (cddr lat)))]))

(define Alternates (lambda (lat)
    (list (H lat) (H (cdr lat)))))
```

4. Write **MyOr v1 v2 v3 v4 …** which takes any number of arguments and returns #t if any of the arguments are #t and returns #f otherwise.

```
(define MyOr (lambda args
    (cond
        [(null? args) #f]
        [(eq? #t (car args)) #t]
        [else (apply MyOr (cdr args))]))
```
5. Write `(Count a L)` which returns the number of times atom `a` occurs in general list `L`

 `(define Count (lambda (a L)
 (cond
 [(null? L) 0]
 [(not (pair? L)) (if (eq? L a) 1 0)]
 [else (apply + (map (lambda (x) (Count a x)) L))))])`

6. Let’s say that a count list for a list `L` is a list of pairs, where the first element of each pair is one of the atoms of `L` and the second element of the pair is how often that atom occurs in `L`. So a count list for `'(a b a c d d a)` is `'((a 3) (b 1) (c 1) (d 2))`. Write function `(CountList lat)` that returns a count list for flat list `lat`.

 `(define CountList (lambda (lat)
 (cond
 [(null? lat) null]
 [(null? (cdr lat)) (list (list (car lat) 1))]
 [else (AddTo (car lat) (CountList (cdr lat)))]))`

 `(define AddTo (lambda (x lop)
 (cond
 [(null? lop) (list (list x 1))]
 [(eq? x (caar lop)) (cons (list x (+ 1 (cadar lop))) (cdr lop))]
 [else (cons (car lop) (AddTo x (cdr lop)))]))`

Another popular way to do this is

 `(define CountList (lambda (lat)
 (cond
 [(null? lat) null]
 [else (cons (list (car lat) (Count (car lat) lat))
 (CountList (rember-all (car lat) lat)))]))`
7.

a) Consider the expression
 (let ([a 5])
 (lambda (x) (+ a 9)))
 What is the value of this expression when it is evaluated in some environment E1?

b) If symbol f is bound to the value of the expression in (7a), explain how Scheme evaluates the expression
 (let ([a 1])
 (f a))
 in some environment E2. Note that I am looking for an algorithm – what steps Scheme takes to evaluate this, not just the result.

The expression in (a) evaluates to a closure, which consist of

 Environment E1+[a bound to 5]
 Parameters (x)
 Body (+ a 9)

When expression (b) is evaluated, first environment E2 is expanded with [a bound to 1]. Then f is evaluated, giving the closure described in (a), a is evaluated in E2+[a 1], giving 1 and the closure is applied to argument 1. This takes the closure’s environment: E1+[a 5], extends it with [x 1], and evaluates the body: (+ a 9) in this extended environment. Since a is bound to 5 in this environment, it evaluates to 14.