
Equivalence



Our algorithm for converting a regular expression into a DFA produces 
a correct but overly complex automaton.  We will now look at some 
technique for simplifying automata.

First, we'll say that a state P in a DFA is reachable if there is some 
string that takes the automaton from the start state to P.

Note that
• The start state is reachable.
• If state P is reachable and there is a transition d(P,a)=Q, then 

state Q is also reachable.



Here is a marking algorithm for finding reachable states:
• Mark the start state.
• Repeat the following until nothing new can be marked:

• If P is marked and there is a transition d(P,a)=Q, then mark Q.
In the end, any state that is marked is reachable.
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We mark state S, then T, then U and X, then W.  There are no 
transitions from any of these states to any new state, so the algorithm 
ends.  This leaves V and Y unmarked, so they are unreachable.  Since 
there is no reachable final state, the automaton accepts no strings.



We say states p and q are equivalent if every string that takes p to a 
final state also takes q to a final state, and vice-versa.
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Example:

States B and D are equivalent because from either we can get to a final 
state with strings 01 and 11.  Similarly, states C, E, and G are all 
equivalent.
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Since B and D are equivalent, and so are C,E, and G, we can rewrite 
this automaton as

BD CEGA F
0,1 0,1 1



Algorithm for finding equivalent states:  Make a table of all (unordered) 
pairs of states. We will mark all pairs that are not equivalent, so at the 
end any unmarked pairs are equivalent.

A. If state p is final and q is not, mark (p,q).
B. If (p,q) is marked and (p1,q1) is another pair of states so that for 

some a d(p1,a)=p and d(q1,a)=q, then mark (p1,q1).
Continue this until nothing more can be marked.
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Initially we mark every pair containing F.
(C,F)=> (B,E), (B,G), (B,C)
(G,F)=> (D,G), (D,C), (D,E)
(D,F)=> (A,E), (A,C), (A,G)
(B,E)=> (A,D)
(D,C)=> (A,B)
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Initially mark every pair containing U.
(T,U)=> (S,V),(S,X)
(W,U)=>(Y,T),(Y,Z)
(X,U)=>(S,T),(W,T),(Y,Z)
(Y,U)=> (X,T),(X,Z),(Y,X),(Y,V),(T,V),(Z,V)
(Z,U)=> (W,X),(W,V)
(Y,T)=> (S,Z),(S,Y)
(W,X)=>(W,Y)
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So (S,W), (T,Z) and (V,X) are 
each equivalent.  We can 
simplify the automaton to the 
one at right:
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We can use this to test whether two DFAs accept the same language. 
This will be true if their start states are equivalent.
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So {A,C,D} are equivalent and so are {E,B}
In particular the two start states are 
equivalent, so the DFAs accept the same 
language.



Here's an algorithm for finding a DFA with a minimum number of 
states equivalent to a given DFA:

1. Eliminate any state that can't be reached from the start state.
2. Partition the remaining states into blocks of equivalent states.
3. Rebuild the automaton using these blocks as the states.  Note 

that if states P and Q are in the same block then for any a d(P,a) 
and d(Q,a) must be equivalent or else P and Q would not be 
equivalent.  This lets us expand the transition function as a 
function between blocks.



Any other automaton for the language must have its start state 
equivalent to this start state, the states that can be reached from the 
start state on any symbol in each automaton must be equivalent, and 
so forth.

Since our construction uses the largest possible blocks of equivalent 
states, no automaton for the language can have fewer states.



Here is a last fun fact about regular languages.  Start with a fixed 
alphabet S and a language L over S.  We say that strings x and y (not 
necessarily in L) are L-equivalent if for every string z either xz and yz
are both in L or are both not in L. (If you find this confusing, think of 
L-equivalent strings as strings that take an automaton for the language 
to the same state.)

We can then talk about L-equivalence classes -- the sets of strings that 
are all mutually L-equivalent.  



For example, consider L = 0*1*.  This divides all strings of 0's and 1's 
into 3 classes:

a) All strings in 0*
b) All strings in 0*1+

c) All other strings
For instance, 000 and 001 are in different classes since 000 can be 
followed by a 0 to get a string in L and 001 can't.

The Myhill-Nerode Theorem say that a language L is regular if and 
only if it divides S* into a finite number of L-equivalence classes.

The proof uses the equivalence classes as states to build a DFA for the 
language.


