
Equivalence

Our algorithm for converting a regular expression into a DFA produces
a correct but overly complex automaton. We will now look at some
technique for simplifying automata.

First, we'll say that a state P in a DFA is reachable if there is some
string that takes the automaton from the start state to P.

Note that
• The start state is reachable.
• If state P is reachable and there is a transition d(P,a)=Q, then

state Q is also reachable.

Here is a marking algorithm for finding reachable states:
• Mark the start state.
• Repeat the following until nothing new can be marked:

• If P is marked and there is a transition d(P,a)=Q, then mark Q.
In the end, any state that is marked is reachable.

Example: S T
0

U

W

X1

Y

V

0start

1

1

1

1

0

0

0

We mark state S, then T, then U and X, then W. There are no
transitions from any of these states to any new state, so the algorithm
ends. This leaves V and Y unmarked, so they are unreachable. Since
there is no reachable final state, the automaton accepts no strings.

We say states p and q are equivalent if every string that takes p to a
final state also takes q to a final state, and vice-versa.

A B
0

D

G

C1

FE

0

start 11

1

1

1

0

Example:

States B and D are equivalent because from either we can get to a final
state with strings 01 and 11. Similarly, states C, E, and G are all
equivalent.

A B
0

D

G

C1

FE

0

start 11

1

1

1

0

Since B and D are equivalent, and so are C,E, and G, we can rewrite
this automaton as

BD CEGA F
0,1 0,1 1

Algorithm for finding equivalent states: Make a table of all (unordered)
pairs of states. We will mark all pairs that are not equivalent, so at the
end any unmarked pairs are equivalent.

A. If state p is final and q is not, mark (p,q).
B. If (p,q) is marked and (p1,q1) is another pair of states so that for

some a d(p1,a)=p and d(q1,a)=q, then mark (p1,q1).
Continue this until nothing more can be marked.

A B
0

D

G

C1

FE

0

start 11

1

1

1

0

Example:

B

C

D

E

F

G

A B C D E F

Initially we mark every pair containing F.
(C,F)=> (B,E), (B,G), (B,C)
(G,F)=> (D,G), (D,C), (D,E)
(D,F)=> (A,E), (A,C), (A,G)
(B,E)=> (A,D)
(D,C)=> (A,B)

S T
0

U

W X

1

Y

V
0

start

1

1
1

1

0

0

0

Example:

Z1 1 0

01

0

T

U

V

W

X

Y

Z

S T U V W X Y

Initially mark every pair containing U.
(T,U)=> (S,V),(S,X)
(W,U)=>(Y,T),(Y,Z)
(X,U)=>(S,T),(W,T),(Y,Z)
(Y,U)=> (X,T),(X,Z),(Y,X),(Y,V),(T,V),(Z,V)
(Z,U)=> (W,X),(W,V)
(Y,T)=> (S,Z),(S,Y)
(W,X)=>(W,Y)

S T
0

U

W X

1

Y

V
0

start

1

1
1

1

0

0

0

Z1 1 0

01

0

T

U

V

W

X

Y

Z

S T U V W X Y

So (S,W), (T,Z) and (V,X) are
each equivalent. We can
simplify the automaton to the
one at right:

SW TZ

VX

U
1

Y 0

0

0

0

0

1

1
1

1

We can use this to test whether two DFAs accept the same language.
This will be true if their start states are equivalent.

A B
0

DC
1

E

0

start

1

1

1

0

0

0

1

start

For example:

B

C

D

E

A B C D

So {A,C,D} are equivalent and so are {E,B}
In particular the two start states are
equivalent, so the DFAs accept the same
language.

Here's an algorithm for finding a DFA with a minimum number of
states equivalent to a given DFA:

1. Eliminate any state that can't be reached from the start state.
2. Partition the remaining states into blocks of equivalent states.
3. Rebuild the automaton using these blocks as the states. Note

that if states P and Q are in the same block then for any a d(P,a)
and d(Q,a) must be equivalent or else P and Q would not be
equivalent. This lets us expand the transition function as a
function between blocks.

Any other automaton for the language must have its start state
equivalent to this start state, the states that can be reached from the
start state on any symbol in each automaton must be equivalent, and
so forth.

Since our construction uses the largest possible blocks of equivalent
states, no automaton for the language can have fewer states.

Here is a last fun fact about regular languages. Start with a fixed
alphabet S and a language L over S. We say that strings x and y (not
necessarily in L) are L-equivalent if for every string z either xz and yz
are both in L or are both not in L. (If you find this confusing, think of
L-equivalent strings as strings that take an automaton for the language
to the same state.)

We can then talk about L-equivalence classes -- the sets of strings that
are all mutually L-equivalent.

For example, consider L = 0*1*. This divides all strings of 0's and 1's
into 3 classes:

a) All strings in 0*
b) All strings in 0*1+

c) All other strings
For instance, 000 and 001 are in different classes since 000 can be
followed by a 0 to get a string in L and 001 can't.

The Myhill-Nerode Theorem say that a language L is regular if and
only if it divides S* into a finite number of L-equivalence classes.

The proof uses the equivalence classes as states to build a DFA for the
language.

