
Grammars
Jump to Lecture 19, p 129



Is the language of arithmetic expressions such as 22+33*44 regular?

Well, yes if you think that such an expression just has the form
number operator number operator ... number

Here is a regular expression for the language:  ( digit+ operator)*digit+

This fails as soon as we add parentheses to the language to get 
(22+33)*45 or (((((3)))))   It is easy to show that the parenthesized 
language fails the pumping lemma test.

We need a way to specify languages that are more complex than 
regular languages.  So we turn to grammars.



Before we see definitions here is an example: a grammar that defines 
the language of parenthesized arithmetic expressions.

E => E+T
E => E-T
E => T
T => T*F
T => T/F
T => F
F => (E)
F => G
G => G digit
G =>digit



We derive a string in the language determined by this grammar by 
starting with E (the start symbol) and repeatedly replacing one of the 
symbols E,T,F,G with the right hand side of one of the grammar rules 
for that symbol.  For example, we can replace E with E+T, E-T, or T. This 
substitution process continues until there are no remaining E,T,F or G 
symbols.



For example:
E => T

=> T*F
=> F*F
=> G*F
=> 3*F
=> 3*(E)
=> 3*(E+T)
=> 3*(T+T)
=> 3*(F+T)
=> 3*(G+T)
=> 3*(4+T)
=> 3*(4+F)
=> 3*(4+G)
=> 3*(4+5)

In each step I have underlined the 
grammar symbol that is expanded 
to generate the next step.



On the other hand, 3++4 is not a string that can be derived from this 
grammar.  If we tried to derive it, the only rule with a + symbol is 
E => E+T.  Nothing in T or below contains a +, so the E  on the right 
hand side would need to generate 3+.  That E could again go to E+T to 
match the 3 and +, but the resulting T can't derive e.



In general, a grammar is a 4-tuple (S,N,S,P) where
• S is a finite alphabet of terminal symbols (like S)
• N is a finite alphabet of non-terminal or grammar symbols
• S ∈ N is the start symbol
• P is a finite set of production rules. Each rule has the form a => b, 

where a and b are both strings in (S+N)*.



To save space, we often write all of the rules that have the 
same left side on one line, separating the right sides with |.  
The previous grammar would be written

E => E+T | E-T | T
T => T*F | T/F | F
F => (E) | G
G => G digit | digit



A derivation is a sequence of steps that replaces the left side of a 
production rule with the right side of this rule.  We usually continue 
derivations until we have derived a string of terminal symbols.



Here is another grammar:
Terminal symbols: {a, b, c}
Nonterminal symbols: {S, T, U}
The start symbol is S
Rules:

S => aSTU
S => abU
bT => bb
bU => bc
UT => TU
cU => cc



Here is a quick derivation:

S => abU
=> abc



Here is another derivation:
S => aSTU

=> aabUTU
=> aabTUU
=> aabbUU
=> aabbcU
=> aabbcc

It isn't terribly difficult to show that this 
grammar generates the language {anbncn: n>= 1}



Grammars can be categorized by the types of rules they allow:

Regular Grammars:  All production rules are either of the form 
A => a or A => aB, where A and B are nonterminal symbols and a is a 
terminal symbol.

Context Free:  All production rules have the form A => a, where A is 
a single nonterminal symbol and a might have both terminals and 
nonterminals.

Context Sensitive:  All production rules have the form 
a => b, where a and b are strings in (S+N)* with |a| <= |b|

Arbitrary



Grammar Machine that 
Recognizes

Regular DFA

Context Free PDA (DFA+Stack)

Context Sensitive Turing Machine with 
bounded memory

Arbitrary Turing Machine

The Chomsky Hierarchy

Here is a look ahead:



For any type of grammar, if w1 and w2 are strings in (S+N)*, we say 
w1 => w2 if there is a grammar rule a => b, where a is a substring of w1

and w2 can be produced from w1 by replacing a with b. 

We say w1 ֜
∗

w2 if there is a sequence of strings v1 ...vn with
w1 = v1 => v2 => ... =>vn = w2

The language defined by the grammar is {w ∈ S* | S ֜
∗

w}


