
Nondeterministic Finite
Automata

S T U
start

10

0,1

Consider the following automaton:

This is called a "Nondeterministic Finite Automaton", or NFA because
in state S there are two options on input 0: we can stay in state S or
transition to state T.

S T U
start

10

0,1

In general, an NFA is a quintuple (Q, S, d, s, F) where Q, S, s, and F
have the same meanings as in a DFA, and for each state t and letter a
in S, d(t,a) is a set of states.

We say that such an automaton accepts string w=w0w1..wn-1 if there is
a sequence of states s= t0t1..tn where each ti+1 is in d(ti,wi) and tn is
final.

The automaton above accepts (0+1)*01, which is the set of all strings
of 0's and 1's that end in 01.

NFAs are often easier to design than DFAs.

Example: Construct an NFA that accepts strings containing 101.

S T V
start

01
U

1

0,1 0,1

Example. Find an NFA that accepts strings containing either 101 or 110.

S
T V

start

0

1 U
1

0,1

0,1

W Y
0X

1

0,1

1

First Theorem of the Course: For any NFA there is a DFA accepting the
same language. So the language accepted by any NFA is regular.
Proof: Start with NFA (S, Q, d, s, F) . Construct DFA (S, Q', d', s', F') :

1. Q' consists of sets of states from Q.
2. s'={s}
3. For each state P={q0...qk} in Q' and each a in S, make a new state

P'= ڂ𝑖=0
𝑘 𝛿(𝑞𝑖 , 𝑎). Then d'(P,a)=P'.

4. F' consists of all of the states in Q' that contain a state in F.

In English, the DFA models all of the states where we could be in the
NFA.

Pause the proof momentarily to see some examples of this
construction:

S T V
start

01
U

1

0,1 0,1

NFA:

DFA: S
start

0

S,T
1

S,U
0

0

S,T,V
1

1 1

S,U,V0

1

S,V

0

0

1

Note that this is equivalent to

DFA: S
start

0

S,T
1

S,U
0

0

S,T,V
1

1 1

S,U,V0

1

S,V

0

0

1

S
start

0

S,T
1

S,U
0

0

Accept
1

0,1

Example: Find a DFA that accepts all strings ending in 01 or 10

S
start

0,1

T
0

U
1

V W
0

1

NFA:

S
start

S,T
0

S,U
1

1

1 0

0DFA:

Now, we need to prove that the NFA and DFA accept the same
language.

1. Suppose w=a0a1....an-1 is a string accepted by the NFA. Then
there is a sequence of states

q0=s
q1∈ d(q0,a0)
q2∈ d(q1,a1)
etc. with qn in F.

Well, d'({s},a0)=Q1, where q1∈ Q1

d'(Q1,a1)=Q2, where q2∈ Q2 and so forth.
Ultimately this produces qn∈ Qn and qn ∈ F, so Qn ∈ F'.
This means the DNA accepts w.

2. On the other hand, suppose w=a0a1....an-1 is a string accepted by
the DFA. So there is a sequence of states

Q0={s}
Q1=d'(Q0,a0)
etc. where Qn contains an element of F.
Note that there is a path on a0 from s to every state in Q1

There is a path on a0a1 from s to every state in Q2, and so
forth. In the end there is a path on input w=a0a1....an-1 from
s to every state in Qn, and one of those is an element of F, so
the NFA also accepts w.

This completes the proof.

