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Consider the following automaton:

This is called a "Nondeterministic Finite Automaton", or NFA because 
in state S there are two options on input 0: we can stay in state S or 
transition to state T.
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In general, an NFA is a quintuple (Q, S, d, s, F) where Q, S, s, and F 
have the same meanings as in a DFA, and  for each state t and letter a 
in S, d(t,a) is a set of states.

We say that such an automaton accepts string w=w0w1..wn-1 if there is 
a sequence of states s= t0t1..tn where each ti+1 is in d(ti,wi) and tn is 
final.

The automaton above accepts (0+1)*01, which is the set of all strings 
of 0's and 1's that end in 01.



NFAs are often easier to design than DFAs.

Example: Construct an NFA that accepts strings containing 101.
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Example. Find an NFA that accepts strings containing either 101 or 110.
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First Theorem of the Course:  For any NFA there is a DFA accepting the 
same language.  So the language accepted by any NFA is regular.
Proof: Start with NFA (S, Q, d, s, F) . Construct DFA (S, Q', d', s', F') :

1. Q' consists of sets of states from Q.
2. s'={s}
3. For each state P={q0...qk} in Q' and each a in S, make a new state 

P'= ڂ𝑖=0
𝑘 𝛿(𝑞𝑖 , 𝑎).  Then d'(P,a)=P'.

4. F' consists of all of the states in Q' that contain a state in F.

In English, the DFA models all of the states where we could be in the 
NFA.



Pause the proof momentarily to see some examples of this 
construction:
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Note that this is equivalent to
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Example: Find a DFA that accepts all strings ending in 01 or 10
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Now, we need to prove that the NFA and DFA accept the same 
language.

1. Suppose w=a0a1....an-1 is a string accepted by the NFA. Then 
there is a sequence of states

q0=s
q1∈ d(q0,a0)
q2∈ d(q1,a1)
etc. with qn in F.

Well, d'({s},a0)=Q1, where q1∈ Q1

d'(Q1,a1)=Q2, where q2∈ Q2 and so forth.
Ultimately this produces qn∈ Qn and qn ∈ F, so Qn ∈ F'.
This means the DNA accepts w.



2. On the other hand, suppose w=a0a1....an-1 is a string accepted by 
the DFA. So there is a sequence of states

Q0={s}
Q1=d'(Q0,a0)
etc. where Qn contains an element of F.
Note that there is a path on a0 from s to every state in Q1

There is a path on a0a1 from s to every state in Q2, and so 
forth.  In the end there is a path on input w=a0a1....an-1 from 
s to every state in Qn, and one of those is an element of F, so 
the NFA also accepts w.

This completes the proof.


