
e-NFAs

Here is another finite automaton -- an e-NFA. Kozen calls these "NFAs
with e-transitions". These allow transitions labeled "e" to be followed
without consuming any input. These aren't interesting in themselves
but are useful for showing that DFAs and regular expressions describe
the same languages.

Example: Here is an e-NFA that accepts strings with 2 0's or 2 1's:

S
T V

start

0

e U

1 0,1

W YX
1

0,1

e

1

0

1

0 0

Formally, an e-NFA is (Q, S, d, s, F) where Q, S, s, and F are defined as
with other NFAs and the inputs to d are a state and either a letter in S
or e. This processes strings in the same way as the NFA
(S, Q, d', s, F), where d'(q,a)=d(q,a) ∪ 𝑞′∈𝛿(𝑞,𝜀)ڂ 𝛿′(𝑞

′, 𝑎). (Note that

this is a recursive definition of d'.)

We are going to show that the language accepted by an e-NFA is
regular (so every e-NFA has an equivalent DFA). To get there we need
the idea of an e-closure of a set of states. Let (Q, S, d, s, F) be the e-
NFA we are talking about and let A be an set of states from Q. ҧ𝐴 will
represent the closure of A. Here are two things we want to be true:

• A ⊂ ҧ𝐴
• For each q in ҧ𝐴 if there is an e-transition from q to q1 then q1

should be in ҧ𝐴.

This gives us an algorithm: to compute ҧ𝐴 start with A and add the
destinations of e-transitions until nothing else can be added.

S T
V

start

e U

W X
e

1

0

1
0

eExample:

This accepts 1*0+01* Here are some e-closures:

{𝑇} = {𝑇, 𝑈} {𝑈} = {𝑈}

{𝑆} = {𝑆, 𝑇, 𝑈} {𝑆,𝑊} = {𝑆,𝑊, 𝑇, 𝑈, 𝑋}

Theorem: Any language accepted by an e-NFA is regular.
Construction: Let (Q, S, d, s, F) be an e-NFA. We will construct an
equivalent DFA (Q', S, d', s', F') :

• Q' consists of subsets of Q
• s' = {𝑠}

• If P={q0,q1,...qk} is a state in Q' and a is in S then P'=ڂ𝑖=0
𝑘 𝛿(𝑞𝑖 , 𝑎)

is also a state in Q' and d'(P,a)=P'
• If P={q0,q1,...qk} is a state in Q' and if any of the qi are in F, the P

is in F'.

S T
V

start

e U

W X
e

1

0

1
0

e

Example:

e-NFA:

Equivalent DFA:

1

W,X

1

S,T,U
V,W,X

U V

0

1

1

0
start

Example:

e-NFA:

Equivalent DFA:

S
T V

start

0

1

U
0

0,1

W Y
1X

1

0,1
e

1

e

0 0

strings with 2 0's

strings with 2 1's

U,W
S,T,W

0

start

V,W V,X V,Y

U,X

T,X T,Y

U,Y

0

0

1 1

0 0,1

1

1 0

1 1

10

0

0

1

Note that this can be simplified to:

U,W

1

S,T,W

0

start
U,X

T,X

1

1 0

Accept

0,10

0,1

1

We still need to prove that the DFA of this construction accepts exactly
the same strings as the original e-NFA. The proof is almost exactly the
same as the proof that NFAs are equivalent to DFAs. If a string is
accepted by the e-NFA, processing the string takes the automaton
through states q0, q1, ... qk, where qk is final. The qi will be elements of
states through which the DFA will pass while processing the string. The
DFA will end in a state containing qk, which is final, so it will accept the
string.

Alternatively, if a is a prefix of the string at it takes the DFA to state
{q0,...qj} then on input a the e-NFA could be in any of the qi states. If
the full string is accepted by the DFA it will also take the e-NFA to an
accept state.

