
Computability



People have been making calculations as long as there have been 
numbers. The question: "What can be calculated?" is almost as old.  
The Greeks wondered about "constructable" numbers that 
represented lengths of line segments that could be constructed with 
a compass and straightedge.



The question "What can be calculated?" became more formal, and 
more answerable, in the 19th Century.  This question became 
entwined with questions about the foundations of mathematics 
(because before that it was assumed that everything could be 
calculated).

In 1901 Bertrand Russell discovered his paradox: "Let S be the set of 
all sets that don’t contain themselves. Is S a member of S?" The 
answer is obviously neither "yes" nor "no".  Can one direction or the  
other be proven? If so, logic is useless; we can prove things that aren't 
true. If not, Russell's paradox is a statement that can be neither 
proven nor disproven.



Now, provability and calculatability aren't quite the same thing, but 
they are clearly related.  

From the late 19th Century into the 1930s Combinatory Logic was 
developed by Moses Schonfinkel and others to explain what could be 
calculated or proven.  Schonfinkel based Combinatory Logic on 
functions rather than predicates and developed the idea of a 
recursive function long before there were computers and 
programming languages.



The most famous mathematician in the early 20th Century was 
David Hilbert, a professor at the University of Gottigen in Germany.  
Hilbert was a particularly famous poser of questions; anyone who 
answered on of his questions became instantly world-famous.  In 
1928 he pronounced the "Entscheidungsproblem" (Decision 
Problem): Could every question with a yes/no answer be decided 
algorithmically?  In 1928 Hilbert, and everyone else, thought the 
answer was obviously "yes" but didn't know how to prove it.



In 1931 Kurt Godel proved his Incompleteness Theorem, which 
showed that in any mathematical system rich enough to include basic 
arithmetic, propositions could be expressed that could neither be 
proved not disproved.  

This did not directly address the Entscheidungsproblem, but after 
1931 everyone guessed that the answer to the 
Entscheidungsproblelm" was "no". 



In 1936 Alonzo Church (at Princeton) invented the lambda calculus to 
show that the answer to the Entscheidungsproblem was "no". Later 
that same year Alan Turing invented Turing Machines to show again 
that the answer to the Entscheidungsproblem was "no".  This set 
limits on the notion of what could be calculated.



After WWII, as interest in computation grew, there were numerous 
models of computability including 

• Turing Machines
• Church’s lambda-calculus
• Recursive Function theory
• Emil Post's "correspondences"

These were all shown to be equivalent. Church’s Thesis (first formally 
stated by Stephen Kleene in 1943) says that Turing Machines (hence 
all of the others) embody our informal notion of what it means to be 
an algorithm



In this class we will look at a number of different mathematical 
models of "computability".  These all have practical ramifications for 
anyone who write programs and we will look at those implications, 
but our main focus will be on the philosophical question "What 
problems can be solved by a computer?"


