
Pushdown Automata



A pushdown automaton, or PDA, extends the e-NFA mode by adding a 
stack with its own alphabet G (which may be different from S). 
Naturally, only the topmost symbol on the stack is visible.

Transition notation for the stack:

a,b|cb means: on input a with  b on top of the stack, push 
c (on top of b).

a,b|c means: on input a with  b on top of the stack, pop 
the stack and push c.

a,b|e means: on input a with  b on top of the stack, pop 
the stack.



S T U
e,X|X e,Z0|ee,X|Z0X

0,X|0X 1,0|e

Here is another example. This automaton accepts {0n1n|n>=0}



We will use the symbol Z0 for the stack bottom (it marks the empty 
stack) and X as a placeholder for anything on the stack.

Example: the following PDA accepts strings in (0+1)* that are even-
length palindromes

S T U
e,X|X e,Z0|ee,X|Z0X

1,X|1X
0,X|0X

1,1|e

0,0|e

This automaton accepts strings that get to state U after consuming 
all of their input.  Note that if it starts with an empty stack the stack 
will be empty at the end of the input.



We need a more formal and deterministic way to think about PDA 
computations.

A configuration is a triple (q, w, g) where
• q is a state
• w is a string (the portion of the input not yet used)
• g is a string of stack symbols (the complete contents of the 

stack, with the top on the left)



Here is a configuration analysis of 
for the input 0011:

S T U
e,X|X e,Z0|ee,X|Z0X

0,X|0X 1,0|e

(T,0011,Z0)(S,0011,Z0) (U,0011,Z0)

(S,011,0Z0) (T,011,0Z0)

(S,11,00Z0) (T,11,00Z0)

(T,1,0Z0)

(T,e,Z0) (U,e,e) accept



One step in such a configuration analysis is
This is valid if the PDA has a transition

(p,w,yb)(q,aw,xb)

q pa,x|y

We write (p,w2,b)(q,w1,a) if there is a sequence of steps

that take the PDA from the first configuration to the second.

*



Formally a PDA is a 7-tuple (S,Q,d,s,F,G,Z0) where
• S,Q,s,F have the same meanings as with DFAs
• d is our configuration transforomation function
• G is the alphabet of stack symbols
• Z0 is the stack bottom

There are two commonly used definitions of what it means for the 
PDA to accept a string:
Acceptance by final state: If P is the PDA (S,Q,d,s,F,G,Z0) then F(P) = 
{w|there is q∈F and a∈G* so that (s,w,Z0)      (q,e,a)}

Acceptance by empty stack: If P is the PDA (S,Q,d,s,F,G,Z0) then E(P) = 
{w|there is some state q so that (s,w,Z0)       (q,e,e)}

*

*



For a given automaton P, E(P) and F(P) are not necessarily the same. 
However, the languages that can be accepted by empty stack are the 
same as those that can be acceped by final state:

Theorem 1: Start with PDA P. Then there is a PDA P' where F(P')=E(P).

Theorem 2: Start with PDA P. Then there is a PDA P' where E(P')=F(P).



Theorem 1: Start with PDA P. Then there is a PDA P' where F(P')=E(P).
Proof: To make P', start with P. Create a new start state s' which 
pushes a new stack symbol X0 onto the stack  before Z0. Make a new 
final state F.  For each state q of P add a transition

q Fe,X0|e

If P ever accepts a string by emptying its stack, P' can transition to its 
final state F.  
On the other hand, if P' ever accepts a string then at the end of the 
the input there must be only X0 on the stack, so P must have 
emptied its stack.



Theorem 2: Start with PDA P. Then there is a PDA P' where E(P')=F(P).
Proof: This is easy. Start with P' the same as P. Give P' a new state E 
that empties the stack: 

E

e,X|e

and add an e-transition from every final state to E.  String w can take P 
to a final state if and only if w empties the stack of P'.


