Pushdown Automata



A pushdown automaton, or PDA, extends the e-NFA mode by adding a
stack with its own alphabet I' (which may be different from ).
Naturally, only the topmost symbol on the stack is visible.

Transition notation for the stack:

a,b|cb Means:oninputa with b on top of the stack, push
" c(ontop of b).

a,b|c means: on input a with b on top of the stack, pop
" the stack and push c.

a,b|e means: on input a with b on top of the stack, pop
" the stack.




Here is another example. This automaton accepts {0"1"| n>=0}

0,X|0X 1,0|¢

2% ‘2%

£,X|ZX @ &,X| X @ £,2,|€
—> —



We will use the symbol Z, for the stack bottom (it marks the empty
stack) and X as a placeholder for anything on the stack.

Example: the following PDA accepts strings in (0+1)* that are even-
length palindromes

1,X|1X 1,1le
0,X]| OX 0,0]¢e

£,X|ZX @ &,X| X @ £,2,|€
—_— —_— —_—

This automaton accepts strings that get to state U after consuming
all of their input. Note that if it starts with an empty stack the stack
will be empty at the end of the input.



We need a more formal and deterministic way to think about PDA
computations.

A configuration is a triple (q, w, v) where
* (s astate
* W is a string (the portion of the input not yet used)
e gisastring of stack symbols (the complete contents of the

stack, with the top on the left)



Here is a configuration analysis of 0,X|OX 10l

for the input 0011: %gﬂ)é)%

(5,0011,2,)—(T,0011,Z,)—> (U,0011,Z,)

(5,011,0Z,) — (T,011,0Z,)

(S,11,00Z,) —(T.1 LLOOZO)

(T) 11020)

{
(T,e,Z,) > (U,g,e) accept




One step in such a configuration analysis is (g,aw,x3) — (p,w,ypB)
This is valid if the PDA has a transition

@2

We write (q,w;,0) — (p,w,,) if there is a sequence of steps
that take the PDA from the first configuration to the second.



Formally a PDA is a 7-tuple (£,Q,9,s,FI',Z,) where
 2,Q,s,F have the same meanings as with DFAs
e O is our configuration transforomation function
[ isthe alphabet of stack symbols
* Z,is the stack bottom

There are two commonly used definitions of what it means for the
PDA to accept a string:

Acceptance by final state: If P is the PDA (X,Q,9,s,F,I',Z,) then ¥(P) =
{w|there is q€F and a€l* so that (s,w,Z,) =>(q,€,0)}

Acceptance by empty stack: If P is the PDA (2,Q,0,s,F.I',Z,) then &(P) =
{w|there is some state q so that (s,w,Z,) —=>(q,¢,¢)}




For a given automaton P, &(P) and #(P) are not necessarily the same.
However, the languages that can be accepted by empty stack are the
same as those that can be acceped by final state:

Theorem 1: Start with PDA P. Then there is a PDA P' where ¥(P')=E(P).

Theorem 2: Start with PDA P. Then there is a PDA P' where &E(P')=%(P).



Theorem 1: Start with PDA P. Then there is a PDA P' where ¥(P')=&(P).
Proof: To make P', start with P. Create a new start state s' which
pushes a new stack symbol X, onto the stack before Z,. Make a new
final state F. For each state g of P add a transition

@
—_—

If P ever accepts a string by emptying its stack, P' can transition to its
final state F.

On the other hand, if P' ever accepts a string then at the end of the
the input there must be only X, on the stack, so P must have
emptied its stack.



Theorem 2: Start with PDA P. Then there is a PDA P' where &(P')=%(P).
Proof: This is easy. Start with P' the same as P. Give P' a new state E
that empties the stack:

g X]|e

%

®

and add an e-transition from every final state to E. String w can take P
to a final state if and only if w empties the stack of P'.



