Pushdown Automata

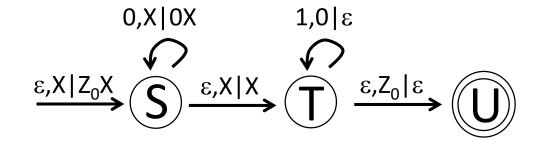
A pushdown automaton, or PDA, extends the ε -NFA mode by adding a stack with its own alphabet Γ (which may be different from Σ). Naturally, only the topmost symbol on the stack is visible.

Transition notation for the stack:

<u>a,b|cb</u> means: on input a with b on top of the stack, push c (on top of b).

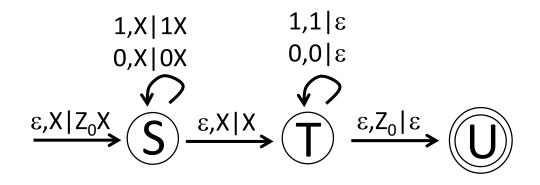
- <u>a,b|c</u> means: on input a with b on top of the stack, pop the stack and push c.
- $a,b|_{\mathcal{E}}$ means: on input a with b on top of the stack, pop the stack.

Here is another example. This automaton accepts $\{0^n1^n | n \ge 0\}$



We will use the symbol Z_0 for the stack bottom (it marks the empty stack) and X as a placeholder for anything on the stack.

Example: the following PDA accepts strings in (0+1)* that are evenlength palindromes

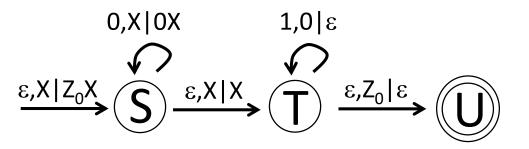


This automaton accepts strings that get to state U after consuming all of their input. Note that if it starts with an empty stack the stack will be empty at the end of the input. We need a more formal and deterministic way to think about PDA computations.

A configuration is a triple (q, w, γ) where

- q is a state
- w is a string (the portion of the input not yet used)
- g is a string of stack symbols (the complete contents of the stack, with the top on the left)

Here is a configuration analysis of for the input 0011:



One step in such a configuration analysis is $(q,aw,x\beta) \longrightarrow (p,w,y\beta)$ This is valid if the PDA has a transition



We write $(q,w_1,\alpha) \xrightarrow{*} (p,w_2,\beta)$ if there is a sequence of steps that take the PDA from the first configuration to the second.

Formally a PDA is a 7-tuple (Σ ,Q, δ ,s,F, Γ ,Z₀) where

- Σ ,Q,s,F have the same meanings as with DFAs
- δ is our configuration transforomation function
- Γ is the alphabet of stack symbols
- Z₀ is the stack bottom

There are two commonly used definitions of what it means for the PDA to accept a string: Acceptance by final state: If P is the PDA (Σ ,Q, δ ,s,F, Γ ,Z₀) then $\mathcal{F}(P) =$

{w|there is q \in F and $\alpha \in \Gamma^*$ so that (s,w,Z₀) $\xrightarrow{*}$ (q, ε,α)}

<u>Acceptance by empty stack</u>: If P is the PDA $(\Sigma, Q, \delta, s, F, \Gamma, Z_0)$ then $\mathcal{E}(P) = \{w | \text{there is some state q so that } (s, w, Z_0) \xrightarrow{*} (q, \varepsilon, \varepsilon)\}$

For a given automaton P, $\mathcal{E}(P)$ and $\mathcal{F}(P)$ are not necessarily the same. However, the languages that can be accepted by empty stack are the same as those that can be acceped by final state:

Theorem 1: Start with PDA P. Then there is a PDA P' where $\mathcal{F}(P')=\mathcal{E}(P)$.

Theorem 2: Start with PDA P. Then there is a PDA P' where $\mathcal{E}(P')=\mathcal{F}(P)$.

Theorem 1: Start with PDA P. Then there is a PDA P' where $\mathcal{F}(P')=\mathcal{E}(P)$. **Proof**: To make P', start with P. Create a new start state s' which pushes a new stack symbol X₀ onto the stack before Z₀. Make a new final state F. For each state q of P add a transition

$$\mathbf{q} \xrightarrow{\epsilon, X_0 | \epsilon} \mathbf{F}$$

If P ever accepts a string by emptying its stack, P' can transition to its final state F.

On the other hand, if P' ever accepts a string then at the end of the input there must be only X_0 on the stack, so P must have emptied its stack.

Theorem 2: Start with PDA P. Then there is a PDA P' where $\mathcal{E}(P')=\mathcal{F}(P)$. **Proof**: This is easy. Start with P' the same as P. Give P' a new state E that empties the stack:

ε,X|ε E

and add an ϵ -transition from every final state to E. String w can take P to a final state if and only if w empties the stack of P'.