P and NP
We say a deterministic TM has time-complexity $T(n)$ if for every input w with length $|w| = n$ the TM halts (whether or not it accepts w) after $T(n)$ steps. The class \mathcal{P} is \{ $L \mid L$ is a language accepted by some TM with polynomial time complexity\}

We say that a non-deterministic TM has time-complexity $T(n)$ if for every input w with length n the TM halts after $T(n)$ steps, in an Accept state if the TM accepts w. The class \mathcal{NP} is \{ $L \mid L$ is a language accepted by some non-deterministic TM with polynomial time complexity\}
While you can ask if any language is in \mathcal{P} or \mathcal{NP} we are often interested in algorithmic questions such as "Find the shortest path from node q_1 to node q_2 in this weighted graph." That translates to a \mathcal{P} or \mathcal{NP} question by looking at the language $\{g \in 1^n \mid g$ is an encoding of a weighted graph and the graph has a path of length n or less from node q_1 to node $q_2\}$

Note that a non-deterministic TM can solve this by guessing the sequence of nodes on the shortest path from q_1 to q_2 and then verifying in polynomial time that these nodes do form a path from q_1 to q_2 and that the sum of the lengths of the edges on this path is no more than n.
Many people describe \mathcal{P} as the set of problems that can be solved in polynomial time while \mathcal{NP} is the set of problems for which a solution can be verified in polynomial time.

It is obvious that \mathcal{P} is a subset of \mathcal{NP}. Perhaps the most important unsolved question in CS is: Is $\mathcal{P} = \mathcal{NP}$? This question arises from Cook's Theorem, which says that if one specific language L is in \mathcal{P} then $\mathcal{P} = \mathcal{NP}$.
Let \(L \) be a language in \(\mathcal{NP} \). We say \(L \) is NP-complete if for every language \(A \) in \(\mathcal{NP} \) there is a polynomial time reduction of \(A \) to \(L \) in the sense that we can covert any string \(w \) in polynomial time to a string \(w' \) so that \(w \) is in \(A \) if and only if \(w' \) is in \(L \). If \(L \) is NP-complete and \(L \) is in \(\mathcal{P} \), then every language \(A \) in \(\mathcal{NP} \) is also in \(\mathcal{P} \) and hence \(\mathcal{P} = \mathcal{NP} \).

We say a language \(L \) is NP-hard if every language \(A \) in \(\mathcal{NP} \) reduces to \(L \). So to be NP-complete a language must be

a) In \(\mathcal{NP} \)

b) NP-hard
Boolean expressions. We will use \land, \lor, and \neg to represent the Boolean operators \textit{and}, \textit{or}, and \textit{not}.

Definition: A Boolean expression is
\begin{enumerate}
 \item A variable that can have value T or F
 \item $e \land f$, $e \lor f$, $\neg e$, or (e) where e and f are Boolean expressions
\end{enumerate}

For example, $x \land \neg(y \lor z)$ is a Boolean expression.
Given values of the variables we can find the value of this expression: build a parse tree for it (linear time) and pass the Boolean values up the tree from the leaves to the root:
Given a Boolean expression we can find if there is a set of assignments to its variables for which the expression evaluates to T. We say such an expression is *satisfiable*. For example, we could build a truth table for it:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$x \land \neg(y \lor z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Unfortunately, a truth table with k variables has 2^k lines so it can't be completed in polynomial time.

SAT is the language of satisfiable Boolean expressions.

Ex: $x \land \neg(y \lor z)$ is in SAT: take $x=T$, $y=F$, $z=F$
Ex: $x \land \neg y \land (y \lor \neg x)$ is not in SAT

It is easy to see that SAT is in \mathcal{NP}: Guess the right values of the variables and verify them by evaluating a parse tree for the expression. This takes linear time.

To prove Cook's Theorem we need to show that every \mathcal{NP} problem reduces in polynomial time to SAT.
Let L be any language in NP. This means there is a non-deterministic TM M that accepts L and M halts on any input w in time \(p(|w|) \) for some polynomial p.

To prove Cook's Theorem we will produce from M and w a Boolean expression that is satisfiable if and only if M accepts w.

Suppose w is any string with \(|w| = n \) and M is any TM. If M accepts w there is a sequence of configurations \(\alpha_0 \alpha_1 \ldots \alpha_{p(n)} \) so that

a) \(\alpha_0 \) is the initial configuration for the computation of M on w
b) Each \(\alpha_i \Rightarrow \alpha_{i+1} \)
c) \(\alpha_{p(n)} \) is a configuration in an accept state.
We will create a Boolean expression B that is satisfiable if and only if such a sequence of configurations is possible. So if SAT is in P we can show L is in P:

a) Start with a nondeterministic TM that accepts L

b) For any string w construct B in polynomial time

c) determine if B is in SAT in polynomial time

d) B is in SAT if and only if w is in L
Note that we need to construct B in polynomial time, so it is important that $|B|$ be a polynomial function of $|w|$.

In k steps we can write at most $|w| + k$ symbols on the tape so we'll assume the non-blank portion of the tape is no longer than $p(n)$.

Also, we'll assume the TM runs exactly $p(n)$ steps for any input w with $|w| = n$.
Here is some notation we'll use:

\(X_{ij}\) is the \(j^{th}\) symbol of the \(i^{th}\) configuration. If the 4\(^{th}\) configuration is \(11q_200\) then \(X_{30} = 1, \ X_{31} = 1, \ X_{32} = q_2, \ X_{33} = 0,\) and \(X_{34} = 0\)

For any tape symbol or state A, \(Y_{ijA}\) is a Boolean variable whose intuitive meaning is "\(X_{ij} == A\)"

We will assume the start state of any TM is \(q_1\).
The Boolean expression we will construct is $B = S \land N \land F$ where

- S says the first configuration is q_1w (where q_1 is the start state of the TM)
- N says each configuration is derived from the previous one.
- F says that in the $p(n)^{th}$ configuration the TM is in a final state.

S and F are easy; N takes some work.
Step 1: If input w is $a_1a_2...a_n$ then

$$S = Y_{00q1} \land Y_{01a1} \land Y_{02a2}... \land Y_{0nan}$$

Step 2: Let $q_{f_1}..q_{f_k}$ be all of the final states of M.

Let F_{ji} be $Y_{p(n)jqfi}$ This says the j^{th} symbol of the last configuration is q_{fi}

Let F_j be $F_{j1} \lor F_{j2} \lor ... \lor F_{jk}$ This says the jth symbol of the last configuration is a final state.

Finally, F is $F_0 \lor F_1 \lor ... \lor F_{p(n)}$ this says the TM accepts w.

Note that $|F_j|$ is independent of w, so $|S|$ and $|F|$ are both $O(p(n))$
Step 3: We only need N, which says that each configuration is derived from the previous one. In fact, we'll make

$$N = N_0 \land N_1 \land \ldots \land N_{p(n)-1}$$

where N_i says that configuration $i+1$ is derived from configuration i.
To make N_i we need two kinds of subexpressions:

A_{ij} will say that the state symbol of the ith configuration is at position j and also that the $j-1^{st}$, j^{th}, and $j+1^{st}$ symbols of the $i+1^{st}$ configuration are correct for the corresponding transition of M.

B_{ij} will say that either the state symbol of the i^{th} configuration is at position $j-1$ or $j+1$ (and so symbol j is covered by A_{ij}) or else position j has a tape symbol that is copied correctly from configuration i to configuration $i+1$.

Given these, $N_i = (A_{i0} \lor B_{i0}) \land (A_{i1} \lor B_{i1}) \land \ldots \land A_{ip(n)} \lor B_{ip(n)}$
Let's pause for an example. Suppose the \(i^{th}\) configuration is \(010q_110\) and \(M\) has transition \(\delta(q_1,1) = (q_2,1,R)\). We want the \((i+1)^{st}\) configuration to be \(0101q_20\).

\(B_{i0}\) will say the initial 0 is copied correctly
\(B_{i1}\) will say the 1 is copied correctly
\(B_{i2}\) will say T
\(A_{i3}\) will say 0q11 is changed to 01q2
\(B_{i4}\) will say T
\(B_{i5}\) will say the final 0 is copied correctly
To make B_{ij}, let $t_1...t_k$ be all of the tape symbols and $q_1..q_m$ all of the states.

$$B_{ij} = (Y_{i(j-1)q_1} \lor Y_{i(j-1)q_2} \lor ... \lor Y_{i(j-1)q_m}) \lor (Y_{i(j+1)q_1} \lor Y_{i(j+1)q_2} \lor ... \lor Y_{i(j+1)q_m})$$

$$\lor \left[(Y_{ijt_1} \land Y_{(i+1)jt_1}) \lor (Y_{ijt_2} \land Y_{(i+1)jt_2}) \lor ... \lor (Y_{ijtk} \land Y_{(i+1)jt_k}) \right]$$

Note that $|B_{ij}|$ has nothing to do with the input w.
\(A_{ij} \) describes the legal transitions.

Suppose we have a move to the right: \(\delta(q_s, a) = (q_t, b, R) \)

If the \(i^{th} \) configuration is \(\alpha q_s a \beta \) with \(q_s \) at position \(j \), we want the \(i+1^{st} \) configuration to be \(\alpha b q_t \beta \)

The phrase of \(A_{ij} \) for this is

\[
p = Y_{ijq_s} \land Y_{i(j+1)a} \land Y_{(i+1)jb} \land Y_{(i+1)(j+1)qt} \land [(Y_{i(j-1)t1} \land Y_{(i+1)jt1}) \lor ... \lor (Y_{i(j-1)tk} \land Y_{(i+1)jtk})]
\]
On the other hand suppose we have a move left: \(\delta(q_s, a) = (q_t, b, L) \)

If the \(i \)th configuration is \(\alpha c q_s a \beta \) with \(q_s \) at position \(j \), we want the \(i+1 \)th configuration to be \(\alpha q_t c b \beta \). The phrase of \(A_{ij} \) for this is

\[
p = Y_{ijqs} \land Y_{(i+1)(j-1)qt} \land Y_{i(j+1)a} \land Y_{(i+1)(j+1)b} \land [(Y_{i(j-1)t1} \land Y_{(i+1)j1}) \lor \ldots \lor (Y_{i(j-1)tk} \land Y_{(i+1)jtk})]
\]

If \(M \) has \(L \) transitions and \(p_{ijt} \) is the corresponding \(A_{ij} \) phrase for transition \(t \) then

\[
A_{ij} = A_{ij1} \lor A_{ij2} \lor \ldots \lor A_{ijL}
\]
This completes the construction. Note that this seamlessly incorporates the nondeterminism of the TM: SAT's question about whether some assignment of variables satisfies B corresponds to the nondeterministic question of whether there is some valid sequence of configurations that gets to a terminal state.

Now, how big is B? $B = S \land N \land F$

$|S| = O(n)$

$|F| = O(p(n))$

$|N| = O(p^2(n))$

This completes the proof that SAT is NP-complete.