Regular Expressions and DFAs
We have already seen the language of Regular Expressions.

1. The language represented by ε is $\{\varepsilon\}$; the language represented by ϕ is ϕ; any letter a in Σ represents the language $\{a\}$

2. If E is a regular expression then so is (E) and it represents the same language as E.

3. If expressions E and F represent languages L_1 and L_2 then expression $E+F$ represents $L_1 \cup L_2$.

4. If expressions E and F represent languages L_1 and L_2 then expression EF represents the language of strings formed by concatenating a string from L_2 onto the end of a string from L_1.

5. If expression E represents language L then expression E^* represents the language of strings formed by concatenating 0 or more strings from L together.

6. If expression E represents language L then expression E^+ represents the language of strings formed by concatenating 1 or more strings from L together. $E^+ = EE^*$
Note that our definition of the language represented by regular expressions is recursive.

Theorem: If E is a regular expression then there is a DFA that accepts the language represented by E.

Proof. Structural induction!!

Here are the base cases:

- ε: $\begin{array}{c} S \\ \end{array}$
- ϕ: $\begin{array}{c} S \\ \end{array}$

For any a in Σ: $\begin{array}{c} S \xrightarrow{a} T \\ \end{array}$
For the inductive cases, suppose \(E \) and \(F \) are regular expressions whose languages are accepted by the \(\varepsilon \)-NFA.

Since these are \(\varepsilon \)-NFAs we can assume there is only one final state in each automaton and there are no transitions out of it. Here are automata for the expressions we can build from \(E \) and \(F \):

\[
\text{(E):}
\]

\[
\text{start} \quad \text{E} \quad \text{start} \quad \text{F}
\]
\(E^* \): start \[\xrightarrow{\varepsilon} \]

\(E^+ \): start \[\xrightarrow{\varepsilon} \]

Diagram:

- \(E^* \) starts and transitions to \(E \) via \(\varepsilon \) and loops back to the start via \(\varepsilon \).
- \(E^+ \) starts, transitions to \(E \) via \(\varepsilon \), and loops back to the start via \(\varepsilon \).
For the E^* automaton note that we need a new start state; it isn't enough to just make the start state final:

This accepts 0^*1

This accepts 000 and many other strings not in $(0^*1)^*$
Example: Find a finite automaton that accepts the language represented by \((0+1)^*01\)
Example: Find a finite automaton that accepts the language represented by \((01+10)^*\)
Theorem: Any language accepted by a DFA is also denoted by a regular expression.

Proof: This is more difficult because we don't have a recursive definition of a DFA for induction. We need to start with an arbitrary DFA and construct a regular expression for it.

Setup:

1. Number the states of the DFA \(q_1, q_2, \ldots, q_n \) where \(q_1 \) is the start state. Note that we start indexing at 1, not 0.

2. Define \(R_{ij}^k \) to be the set of all strings that take the automaton from state \(q_i \) to state \(q_j \) without passing through any states numbered higher than \(k \) (where "passing through" means first entering, then leaving).
For example, consider:

Here $R_{13}^2 = \{00\}$
$R_{12}^0 = \{0\}$
$R_{13}^4 = \{00, 010, 0110, \ldots \} = 01^*0$
Note that if the automaton has \(n \) states then \(\bigcup_{q_i \in F} R_{1j}^n \) is the set of strings accepted by the automaton. We will use recursion on \(k \) to show that each of the \(R_{ij}^k \) sets is denoted by a regular expression.

For the base case, \(k=0 \). If \(i \neq j \) then \(R_{ij}^0 \) is empty if there is no transition from \(q_i \) to \(q_j \); if there is such a transition then \(R_{ij}^0 = \{ a \mid \delta(q_i, a) = q_j \} \). If \(i \) and \(j \) are equal \(R_{ii}^0 = \{ a \mid \delta(q_i, a) = q_i \} \) \(\cup \) \(\{ \varepsilon \} \). In all of these cases \(R_{ij}^0 \) is finite and so is represented by a regular expression.
For the inductive case, note that for any $k > 0$

$$R_{ij}^k = R_{ij}^{k-1} \cup R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}$$

- don't pass thru q_k
- first trip to state k
- repeated trips to q_k
- from q_k to q_j

This means we can represent R_{ij}^k by the regular expression

$$r_{ij}^k = r_{ij}^{k-1} + r_{ik}^{k-1} (r_{kk}^{k-1})^* r_{kj}^{k-1}$$

Finally, $r = \sum_{q_j \in F} r_{1j}^n$ is a regular expression that denotes the language accepted by the automaton.
Example:

\[r_{ij}^1 = r_{ij}^0 + r_{i1}^0 (r_{11}^0) r_{1j}^0 \]
\[r_{ij}^2 = r_{ij}^1 + r_{i2}^1 (r_{22}^1) r_{2j}^1 \]
<table>
<thead>
<tr>
<th></th>
<th>k=0</th>
<th>k=1</th>
<th>k=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{11}^k</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
</tr>
<tr>
<td>r_{12}^k</td>
<td>1</td>
<td>1</td>
<td>$1+1(0+\varepsilon)(0+\varepsilon)=10^*$</td>
</tr>
<tr>
<td>r_{13}^k</td>
<td>ϕ</td>
<td>ϕ</td>
<td>$1(0+\varepsilon)*1=10^*1$</td>
</tr>
<tr>
<td>r_{21}^k</td>
<td>ϕ</td>
<td>ϕ</td>
<td>ϕ</td>
</tr>
<tr>
<td>r_{22}^k</td>
<td>$0+\varepsilon$</td>
<td>$0+\varepsilon$</td>
<td>$(0+\varepsilon)+(0+\varepsilon)(0+\varepsilon)^(0+\varepsilon)=0^$</td>
</tr>
<tr>
<td>r_{23}^k</td>
<td>1</td>
<td>1</td>
<td>$1+(0+\varepsilon)(0+\varepsilon)*1=0^*1$</td>
</tr>
<tr>
<td>r_{31}^k</td>
<td>ϕ</td>
<td>ϕ</td>
<td>ϕ</td>
</tr>
<tr>
<td>r_{32}^k</td>
<td>ϕ</td>
<td>ϕ</td>
<td>ϕ</td>
</tr>
<tr>
<td>r_{33}^k</td>
<td>ε</td>
<td>ε</td>
<td>ε</td>
</tr>
</tbody>
</table>
Finally, we are only interested in r_{13}^3.

$$r_{13}^3 = r_{13}^2 + r_{13} (r_{33}^2) r_{33}^2$$
$$= 10*1 + (10*1)\varepsilon \varepsilon$$
$$= 10*1$$