Grammars II

See Section 5.2
The derivation of a string produces a parse tree for the string:

Grammar:

\[
\begin{align*}
E &\Rightarrow E+T \mid E-T \mid T \\
T &\Rightarrow T\ast F \mid T/F \mid F \\
F &\Rightarrow (E) \mid G \\
G &\Rightarrow G \text{ digit} \mid \text{ digit}
\end{align*}
\]

Derivation:

\[
\begin{align*}
E &\Rightarrow T \\
&\Rightarrow T\ast F \\
&\Rightarrow F\ast F \\
&\Rightarrow G\ast F \\
&\Rightarrow 3\ast F \\
&\Rightarrow 3\ast (E) \\
&\Rightarrow 3\ast (E+T) \\
&\Rightarrow 3\ast (T+T) \\
&\Rightarrow 3\ast (F+T) \\
&\Rightarrow 3\ast (G+T) \\
&\Rightarrow 3\ast (4+T) \\
&\Rightarrow 3\ast (4+F) \\
&\Rightarrow 3\ast (4+G) \\
&\Rightarrow 3\ast (4+5)
\end{align*}
\]

Parse Tree:
Example 1: Find a grammar for \(\{0^n1^n \mid n \geq 0\} \) This is one of the languages we showed isn't regular.
\[
S \rightarrow 0 \ S \ 1 \mid \varepsilon
\]

Example 2: Find a grammar for \(\{0^n2^m1^n \mid n, m \geq 0\} \)
\[
s \rightarrow 0 \ S \ 1 \mid T \\
T \rightarrow 2 \ T \mid \varepsilon
\]

Example 3: Find a grammar for \(\{ww^{\text{rev}} \mid w \in (0+1)^*\} \) (even-length palindromes)
\[
S \rightarrow 0 \ S \ 0 \mid 1 \ S \ 1 \mid \varepsilon
\]

Example 4: Find a grammar for the language of all palindromes of 0's and 1's
\[
S \rightarrow 0 \ S \ 0 \mid 1 \ S \ 1 \mid 0 \mid 1 \mid \varepsilon
\]
Note that we can reproduce the string being parsed with a left-to-right traversal of the leaves of the parse tree:

$$3^* (4 + 5)$$
Consider the DFA

Here is a grammar for the language this accepts:

\[S \rightarrow 1T \mid 0U \]
\[T \rightarrow 0T \mid 1U \]
\[U \rightarrow 0S \mid \varepsilon \]
Here is a derivation of 00101:

\[
\begin{align*}
S &\Rightarrow 0U \\
 &\Rightarrow 00S \\
 &\Rightarrow 001T \\
 &\Rightarrow 0010T \\
 &\Rightarrow 00101U \\
 &\Rightarrow 00101
\end{align*}
\]
Definition: A grammar that has only rules of the forms
 • \(X \rightarrow a \ Y \)
 • \(X \rightarrow a \)
is called a regular grammar.

For example, here is a regular grammar:
 \[
 S \rightarrow 0S \mid 1T \mid 0 \\
 T \rightarrow 0T \mid 1S \mid 1
 \]

A typical derivation is \(S \rightarrow 0S \rightarrow 00S \rightarrow 001T \rightarrow 0010T \rightarrow 00101 \)
Theorem: The language defined by a regular grammar is regular.

Proof: Given a regular grammar, build an NFA from it. The states of the NFA are the non-terminal symbols of the grammar, plus an extra final state called "Accept". If $X \Rightarrow aY$ is a rule in the grammar add a transition in the NFA $\delta(X,a) = Y$. If $X \Rightarrow a$ is a grammar rule make a transition $\delta(X,a) = \text{Accept}$.

Every step except the last of a derivation of a string in the regular grammar has the form $S \Rightarrow^* \alpha X$. An easy induction shows that $S \Rightarrow^* \alpha X$ if and only if string α takes the NFA from state S to state X. The grammar derives string w if and only if $w = \alpha a$ and there is a non-terminal symbol X with $S \Rightarrow^* \alpha X$ and $X \Rightarrow a$, which says the string αa will take the NFA to state Accept. This says the grammar derives string w if and only if the NFA accepts the string w.
For example, start with the regular grammar
\[
S \rightarrow 0S \mid 1T \mid 0 \\
T \rightarrow 0T \mid 1S \mid 1
\]

This gives the NFA

Both the grammar and the NFA describe strings with an even number of 1's.
Theorem: Every regular language has a regular grammar.

Proof: Start with DFA that describes a regular language. We will build a grammar for the language. The non-terminal symbols of the grammar will be the names of the states of the DFA. If the DFA has transition $\delta(X,a) = Y$, add the grammar rule $X \Rightarrow aY$. If the DFA has transition $\delta(X,a) = Y$ and Y is a final state, also add the grammar rule $X \Rightarrow a$. A string $w = \alpha a$ is accepted by the DFA if and only if $S \Rightarrow^* \alpha X$ and $X \Rightarrow a$, so w is accepted by the DFA if and only if $S \Rightarrow^* w$.
Since regular grammars are context-free, we see that all regular languages are context free. But the family of context-free languages includes many languages that are not regular, including

\{0^n1^n \mid n \geq 0\} \text{ and } \{ww^{rev} \mid w \in (0+1)^*\}