A Field Guide to the proof of the Cook-Levin Theorem

We start with a (possibly non-deterministic) Turing Machine \(M \) and input string \(w \). We want to construct a Boolean expression \(B \) that is satisfiable if and only if \(M \) accepts \(w \). We are guaranteed that \(M \) halts after \(p(n) \) steps, where \(n = |w| \).

As \(M \) processes \(w \) it goes through a sequence of configurations \(\alpha_0, \alpha_1, \ldots, \alpha_{p(n)} \).

We use \(X_{ij} \) to represent the \(j^{th} \) symbol of the \(i^{th} \) configuration. So if \(\alpha_4 \) is \(11q_200 \) then \(X_{40} = 1 \), \(X_{41} = 1 \), \(X_{42} = q_2 \), etc. This is just notation; the \(X_{ij} \)s do not appear in \(B \). By padding the right end of the configuration with blanks we have such an \(X_{ij} \) for \(0 \leq i \leq p(n) \) and \(0 \leq j \leq p(n) \).

For every \(i \) and \(j \) and every state and tape symbol \(A \) we have a Boolean variable \(Y_{ijA} \). These are used in the expression \(B \). We will use these in such a way that if \(Y_{ijA} \) is True then \(X_{ij} \) is \(A \).

\(F_j \) is a Boolean expression made out of the \(Y_{ijA} \)s that says the \(j^{th} \) symbol of the last configuration \(\alpha_{p(n)} \) is a final state.

\(N_i \) is a Boolean expression made out of the \(A_{ij} \)s and \(B_{ij} \)s defined below that says that each configuration \(\alpha_{i+1} \) is correctly derived from the previous configuration \(\alpha_i \) according to the transitions of our Turing Machine \(M \).

\(A_{ij} \) is a Boolean expression made out of the \(Y_{ijA} \)s that says the state symbol of the \(i^{th} \) configuration is at position \(j \) and that the \(j-1^{st} \), \(j^{th} \), and \(j+1^{st} \) symbols of the \(i+1^{st} \) configuration are correct for the corresponding transition of \(M \).

\(B_{ij} \) is a Boolean expression made out of the \(Y_{ijA} \)s that says that either the state symbol of configuration \(\alpha_i \) is a position \(j-1 \) or position \(j+1 \) (and so symbol \(j \) is covered by \(A_{ij} \)) or else position \(j \) of configuration \(\alpha_i \) has a tape symbol that is copied correctly to configuration \(\alpha_{i+1} \).