Language Definitions and Notations
Here are a bunch of basic definitions that we will use all semester. There is nothing exciting here but you won't be able to follow much until you get these in your head.

Σ is a finite set of symbols called our \textit{alphabet}. This could be the set \{0,1\} of binary digits, or the set of lower-case letters 'a' to 'z'. Don't let the term "alphabet" confuse you. Σ could also be the set of valid Java keywords and identifiers up to length 64 (so it is finite). Any finite set of atomic elements will do.

A \textit{string} or \textit{word} over Σ is any finite sequence of elements of Σ.

ε represents the \textit{empty string}: the string of length 0
Σ^n is the set of strings over Σ of length n (exactly n).

Σ^* is the set of all strings over Σ, including the empty string.

Σ^+ is the set of all strings with positive length over Σ.

Obviously, $\Sigma^* = \Sigma^+ \cup \{\varepsilon\}$

A language over Σ is any subset of Σ^*.
Question 1: How big is Σ^*?
 Well, if Σ is the empty set then Σ^* is \{\varepsilon\}. If Σ is not empty then Σ^* is countable -- it is a countable union of finite sets.

Question 2: How many languages are there over Σ?
 If Σ is empty there are two, both trivial: \{\} and \{\varepsilon\}. If Σ is not empty there are uncountably many languages over it (for if you could number the subsets of Σ^* you could create a new subset that wasn't any of them: if string i is in subset i then exclude it from your new subset, otherwise include it).