1. Here is an \(\varepsilon \)-NFA. Convert it to a DFA and find all of the strings of length 2 accepted by it.
 \(S \) is the start state.

2. Design an \(\varepsilon \)-NFA for the set of strings consisting of either 01 repeated 1 or more times or 010 repeated 1 or more times.
3. Give a regular expression for the set of strings over the alphabet \(\{a,b,c\} \) containing at least one a and at least one b.
4. Give a DFA for the set of strings with an even number of zeros.
5. Give a regular expression for the set of strings with an even number of zeros.
6. Describe in English the language denoted by the regular expression \((1+\varepsilon)(00^*1)^*0^*\)
7. Suppose we have a finite automaton with no transitions into the start state and none out of the final state. This automaton accepts language \(\mathcal{L} \). If we modify the automaton by adding an \(\varepsilon \)-transition from the final state to the start state, what language will it accept?
8. Convert the regular expression \((0+1)(01)^*\) into an \(\varepsilon \)-NFA using the construction we developed in class.
9. Convert \((1+\varepsilon)(00^*1)^*0^*\) into an \(\varepsilon \)-NFA any way you wish.
10. Convert the following DFA into a regular expression using the construction we developed in class. \(S \) is the start state.