
Exceptions

See Section 7.4 of the Notes.

An exception in computer terms is not a good thing -
- it represents unexpected behavior of a program,
usually something that would cause the program to
crash.

Consider this program:
def divider(x):
 print("100/%d = %d."%(x, 100//x))

def main():
 done = False
 while not done:
 number = eval(input("Enter a positive number, or a
negative to exit: "))
 if number < 0:
 done = True
 else:
 divider(number)
main()

If you enter 5 it prints "100/5 =20." If you enter -1
it terminates.

But if you enter 0 it does this:
Traceback (most recent call last):
 File "C:/Users/bob/Documents/Classes/cs150-spring15/Class Examples and
Notes/February/February 23/crasher.py", line 12, in <module>
 main()
 File "C:/Users/bob/Documents/Classes/cs150-spring15/Class Examples and
Notes/February/February 23/crasher.py", line 11, in main
 divider(number)
 File "C:/Users/bob/Documents/Classes/cs150-spring15/Class Examples and
Notes/February/February 23/crasher.py", line 2, in divider
 print("100/%d = %d"%(x, 100//x))
ZeroDivisionError: integer division or modulo by zero

Obviously we divided by 0 and you can't do that
so the program crashed. With this simple
program it wouldn't be hard to put in if-
statements that tested for the condition and
prevented the crash.

With more complex programs it is hard to put in code
that checks for every conceivable input some doofus
of a user could think of using. On the other hand,

PROGRAMS YOU WRITE FOR SOMEONE ELSE
SHOULD NEVER, EVER, EVER CRASH.

Most programming languages have a feature that
allows you to catch exceptions and (hopefully) deal
with them instead of allowing the program to crash.

In Python this is the try-except statement.

Here is the form of a try-except statement:

 try:
 <code>
 except <exception name>:
 <what to do in an exception>

One fix for this program is to change the divider
function to

def divider(x):
 try:
 print("100/%d = %d."%(x, 100//x))
 except ZeroDivisionError:
 print("We can't divide by 0.")

Note that we get the name of the exception from
the error message that results when we don't catch
it. The last line of that message was

 ZeroDivisionError: integer division or modulo by zero

Where to put a try-except statement is more an art
than a science. Exceptions are passed up from called
function to the caller, and the program only crashes
if they aren't caught somewhere. Here is a new
version of our program that catches several
exceptions:

def divider(x):
 print("100/%d = %d"%(x, 100//x))

def main():
 done = False
 while not done:
 try:
 number = eval(input("Enter a positive number, or a negative to exit: "))
 if number < 0:
 done = True
 else:
 divider(number)
 except SyntaxError:
 print("I didn't understand that input.")
 except ZeroDivisionError:
 print("We can't divide by 0.")
 except:
 print("I'm confused.")
main()

Note that an except block of the form
 except:
 <exception handling code>

(with no exception name) catches all exceptions.
This is too general to be useful in many situations
except as a last resort.

What will this program print if we enter x at the
prompt?

def main():
 x = eval(input("Enter x: "))
 if (number(x)):
 print("x is %d."%x)
 else:
 print("I don't know what x is.")

main()

A: It won't run because the system doesn't know
what number is.
B. It will crash because the system doesn't know
what number is.
C. It will crash because the system can't evaluate x.

Here is a program that crashes if we enter 0:
def main():
 done = False
 while not done:
 x = eval(input("Enter a number: "))
 if x < 0:
 done = True
 else:
 print("The reciprocal of that number is %.2f"%(1/x))

main()

Where do we put the try-except block to prevent crashes?
A) Before def main()
B) try before the while loop, except after the loop
C) try before print statement except after it.
D) try before x=eval, except at the end of the loop

