
2.6. INPUT AND OUTPUT 43

2.6 Input and Output

We have already seen Python’s input(), eval() and print() functions. In this
section we will look at them with a little more care.

Input from the user

Python’s input() function is very basic. When it is called the system waits
for the user to type something and hit the Return key. When this is completed
the function takes whatever the user has typed, packages it into a string, and
returns it. It does not evaluate what the user has typed in any way. You can use
this function with no argument, in which case it just halts and waits for input,
or you can give it a string which it interprets as a prompt and prints before it
waits for the input:

name = input (”Who a r e you? ”)

I usually leave one blank space at the end of the prompt string (just before
the closing double-quotes) so the user’s input doesn’t run right up against the
prompt; it makes the input dialog easier to read.

The input() function will only get you a string. If you want something else,
you need to evaluate in some way the string that input() returns. The easiest
way to do this is with the eval() function. eval(input(<prompt>)) prints
the prompt, waits for input, and then tries to interpret the input as a Python
value. This is easy and straightforward if the user has entered a number, as in

l e n g t h = eval (input (” Ente r the l e n g t h : ”))

We will usually restrict our use of eval() to this situation: interpreting strings
as numbers. It is possible to evaluate more elaborate strings. The string ”[2,
4, 6, 8]” evaluates to a list with 4 elements. For more on lists, see Chapter 6.
The string ”1, 2, 3” is evaluated as a tuple with 3 elements. Tuples are also
discussed in Chapter 6. The problem with trying to use eval(input()) for these
is getting the user to type in exactly the right format. The wrong format, such
as omitting the commas between the elements, will cause eval() to crash on the
input string.

One option for inputting compound data is to give the user a format and
then use the string method split () to separate it into fields that can be easily
evaluated. For example, suppose we want the user to enter a date. We might
signal the input with

d a t e S t r i n g=input (” Ente r a date i n the form m/d/y : ”)

We can then use the string split () method to divide the input into fields. split ()
takes one string argument that it regards as a separator, and it splits the string
into a list of fields determined by this separator. For example, if dateString is
”10/29/1929” then dateString . split (”/”) is the list [”1”,”29”, ”1929”]. The
individual fields in this are still strings, but we can use the eval() function to
turn them into numbers. Here is a complete block of code that does this, giving
integer values to the variables month, day, and year.

44

d a t e S t r i n g=input (” Ente r a date i n the form m/d/y : ”)
d a t e L i s t=da t e S t r i n g . s p l i t (”/”)
month=eval (d a t e L i s t [0])
day=eval (d a t e L i s t [1])
y ea r=eval (d a t e L i s t [2])

Printing

The print() function is used to make output appear on the console, the com-
puter screen. The simple statement

print (x)

causes the value of x to be printed. You can print multiple values with

print (x , y , z)

By default a single space is printed between each of the values. We will see
below how to change this default. The print() function also terminates its line
of output, so the code

print (”Marvin K r i s l o v ”)
print (” Obe r l i n Co l l e g e ”)

results in

Marvin K r i s l o v
Obe r l i n Co l l e g e

Again, we will see how to change this default. The full print() function is

print (<va l u e s >, sep=<s e pa r a t o r >, end=<t e rm ina to r>)

with all three fields optional. Here <values> is either a single value or a comma-
separated list of values, such as 23, 45. If the values are omitted, only the
end-string is printed. <separator> is any string we want to appear between the
values. For example,

print (23 , 45 , 58 , sep=”∗∗∗”)

will print

23∗∗∗45∗∗∗58

If there is only one value the separator is not printed at all. By default the
separator is a string consisting of one single space character: ” ”.

It is often convenient to build up a line of output through several calls to
print(). The end-string, or terminator, defaults to the newline character, which
in Python is written ”\n”. This is what causes print() to end the current line
and prepare to start a new line. If we change the end-string to something else
we stay on the same line after printing, so the next call to print() appears on
the same line. If we want to do this the most common value to use for the
end-string is the empty string, or ””. For example, the following code

2.6. INPUT AND OUTPUT 45

print (”Marvin K r i s l o v ” , end=””)
print (” Obe r l i n Co l l e g e ”)

will print

Marvin K r i s l o vO b e r l i n Co l l e g e

Here is a simple example of how we might use these techniques to print a
table in nice orderly columns. The following code is a little redundant; we will
be able to do this much more simply after we see loops in Chapter 3.

print (”%5d” % 123 , end=””)
print (”%5d” % 5 , end=””)
print (”%5d” % 17 , end=””)
print (”%5d” % 444 , end=””)
print ()
print (”%5d” % 11 , end=””)
print (”%5d” % 9 , end=””)
print (”%5d” % 123 , end=””)
print (”%5d” % 3 , end=””)
print ()
print (”%5d” % 422 , end=””)
print (”%5d” % 73 , end=””)
print (”%5d” % 12 , end=””)
print (”%5d” % 9 , end=””)
print ()

This prints

123 5 17 444
11 9 123 3

422 73 12 9

