
3.2. BOOLEANS 53

3.2 Booleans

The Boolean data type consists of just two values: True and False. In Python
this is implemented as a sub-type of the integers, where 0 corresponds to True
and any non-zero value corresponds to False. You can actually use integer
operations on Boolean values if you choose (such as True + False), but this will
just make your programs harder to read. The most common ways to produce
Boolean values is through the comparison operators (such as < or ==), and
through the membership search operations on strings and lists.

Sometimes you need to build compound conditions out of simpler ones. For
example, if you want to check that a number x is between 1 and 10, you can do
so with

i f x >= 1 and x <= 10 :

In this example we took two complete Boolean conditions and connected them
with the operator and.

There are three Boolean operators: and, or, and not.

Symbol Meaning Example Result

and
x and y is True only when both
sides are True; if either side is
False the result is False.

x = 23

x < 10 and x > 0 False
x > 10 and x < 100 True

or
x or y is True when either side is
True; it is only Fals when both
sides are False.

x = 23

x < 10 or x > 0 True
x > 10 or x < 100 True
x < 10 or x < 20 False

not
not x has the opposite value of
x: it is False when x is True and
True when x is False.

x = 23

not x < 10 True
not x > 20 False

not x == 23 False

You can build very complex expressions using these operators. In general,
if you aren’t sure how Python will group together sub-expressions, it is best to
use parentheses to force the expression to be parsed in the way you intend. For
example, the following condition describes the numbers 6, 7, 8, 9, 21, 22, 23;

i f ((x > 5) and (x < 10)) or ((x >20 and (x < 2 4)) :

54

One comforting thing about the way Python implements the Boolean oper-
ators is that it stops evaluating as soon as it knows the answer. For example,
the expression a and b is False if either of its operands is False, so if a is False
there is no need to evaluate b at all. If s is a string and n is an integer might
have the code

i f n < len (s) and s [n] == ’ b ’ :
print (”The s t r i n g c o n t a i n s l e t t e r ’ b ’ . ”)

If n is not less than the length of the string, the right side of the expression
s [n] == ’b’ would normally cause the program to crash. It doesn’t in this case
because Python never evaluates the right side of the expression; it knows the
result just from the left side, n < len(s). Note that if we wrote the expression
in the opposite order,

i f s [n] == ’ b ’ and n < len (s) :
print (”The s t r i n g c o n t a i n s l e t t e r ’ b ’ . ”)

then the program will crash when n gets a value large than the length of s. The
or operator is implemented in the same way: if its left operand evaluates to
True it doesn’t bother to evaluate the right operand since it knows the result of
the full expression is True.

As a final example we will develop a program that inputs three numbers and
sorts them, which means it puts them into increasing order. There are many
sorting algorithms, but with just three numbers we can take a common-sense
approach. First we need to input the three numbers, which we will store in
variables a, b, and lstinlinec. This calls for three input statements, each of
which will look like

a = eval (input (” Ente r a number : ”))

Next, we need to determine the ordering of lstinlinea, b, and lstinlinec. There
are factorial (n) ways to order n numbers (There are lstinlinen different choices
for the first number; for each of these there are n−1 choices for the second
number, and so forth....); since factorial (3) is 6, we know that there are 6
possible orderings for our numbers. One way to write the program would be to
have 6 variations of a statement such as

i f a <=b and b <= c :
print (a , b , c)

We will take an alternative approach that finds the smallest number and then
orders the other two. This uses three variations of the following statement:

i f a <= b and a <= c : # a i s the sm a l l e s t
i f b <= c :

print (a , b , c)
else :

print (a , c , b)

3.2. BOOLEANS 55

Note the use of else here. If a is the smallest of the three numbers and b is not
less than or equal toc, then c must be smaller than b.

Here is the entire program

This i n p u t s 3 numbers and p r i n t s
then out i n i n c e a s i n g o r d e r .

def main () :
a = eval (input (” Ente r a number : ”))
b = eval (input (” Ente r ano the r number : ”))
c = eval (input (” Ente r a t h i r d number : ”))
print (”The c o r r e c t o r d e r i n g o f tho s e i s ” , end=””)
i f a <= b and a <= c : # a i s the sm a l l e s t

i f b <= c :
print (a , b , c)

else :
print (a , c , b)

e l i f b <= a and b <= c : # b i s the sm a l l e s t
i f a <= c :

print (b , a , c)
else :

print (b , c , a)
else : # c i s the sm a l l e s t

i f a <= b :
print (c , a , b)

else :
print (c , b , a)

main ()

Program 3.2.1: Sorting three numbers

