
4.4. THE CALENDAR PROGRAM 109

4.4 The Calendar program

To illustrate the power of functions, in this section we will develop a useful
program that allows the user to input a date or a month or a year. For a
specific date the program will respond with the day of the week on which this
date occurred or will occur. For example, 2 16 1952 was a Saturday (and my
birthday) while 12 7 1941 was a Sunday (and the day on which Pearl Harbor
was attacked). If the user inputs a month the program will respond with a
calendar for that month. For a year the program responds with 12 calendars
for the 12 months of that year. This is a substantial program with 14 different
functions, but its development is rather straightforward.

Our program is based on one fact and a simple idea. The fact is that January
1, 1800 was a Wednesday. We use this as our starting date because it comes
after the adoption of the Gregorian calendar by England and its colonies in
1752. Wednesday, September 2 1752 was followed by Thursday, September 14
1752 to bring the civil calendar more in line with the seasons. There have been
no significant changes to the Western calendar since.

The idea we will use is to notice that if the number of days between two dates
is divisible by 7 then these dates must occur on the same day of the week. For
example, August 12 and August 26 differ by 14 days; in 2009 they both occur
on a Wednesday while in 2005 they both are on a Friday. For our purposes
”days between” will mean all days including the first date but not including the
second, so the 7 days between August 12 and August 19 are numbered 12, 13,
14, 15, 16, 17, and 18. Our algorithm comes down to counting the number of
days between January 1, 1800 and the date we are interested in, and taking this
count mod 7. If the result is 0 the date occurs on a Wednesday, if it is 1 the
date occurs on a Thursday, and so forth.

The first step is to get input from the user. We know the form of an input
loop; we’ll read dates and respond to them until we get a signal that the user is
done with the program. But how do we read a date? There are lots of possible
formats. We could ask the user for a year, then a month in that year, then a
date in that month, but this seems very awkward and slow. A more intuitive
format from the user’s point of view would be to enter all of the information on
one line: a user could input

9 16 2009

to learn that September 16, 2009 occurs on a Wednesday. We will store the input
values in a list, where the individual entries are numbers are numbers. Lists are
written inside parentheses, as in [9, 16, 2009]. The algorithm for reading the
date is similar to a lot of Python input algorithms. We will first read the entire
line of input, because reading a line of text as a string is easy. There is a string
method called split () that divides a string into ”words”, using white space as
the delimiter between words. If s is the line of input, s . split () is a list of the
words (which in our case are the numbers) of s. A for-loop can run through
this list; we can use the int() function to convert each word into its numeric
value. Altogether, we get the following function for reading a date:

110

def ReadDate () :
s = input (” Ente r a date i n the form m d y , \

or a b lank to e x i t : ”)
t = []
for x in s . s p l i t () :

t = t + [int (x)]
return t

This function always returns variable t, which starts as an empty list, and has
numbers added to it. If there is a no input, as will happen when the user enters
a blank line, function readDate() returns an empty list. We can use this as the
exit condition for our program.

Our main() function is our usual input loop, with format:

def main () :
done = Fa l s e
while not done :

date = ReadDate ()
i f len (date) == 0 :

done = True
else :

<print the day for t h i s date>

We will assign a function PrintDay() to the task of printing the day of the
week for a particular date. The information that needs to be sent to this function
are the month, day, and year of the date: these are the first, second, and third
fields that function ReadDate() returns:

def main () :
done = Fa l s e
while not done :

date = ReadDate ()
i f len (date) == 0 :

done = True
e l i f len (date) == 3 :

Pr intDay (date [0] , date [1] , date [2])
else :

print (”Bad date . ”)

Function PrintDay() holds the basic activity of this program: it takes as argu-
ments a month, day, and year, and prints the day of the week corresponding to
this date. We will divide this into two steps. The hard part is computing the
numeric day of the week: 0 for Sunday, 1 for Monday, and so forth. We’ll create
a function FindDay() for this. Once we have that number, we will give it to a
simple function DayName() to print as a string. This makes function PrintDay()
particularly easy:

4.4. THE CALENDAR PROGRAM 111

def Pr intDay (m, d , y) :
This p r i n t s the day o f the week (m, d , y) f a l l s on
day = FindDay (m, d , y)
print (”That was a %s ” % DayName(day))

The DayName() function is also easy:

def DayName(d) :
#This r e t u r n s a s t r i n g f o r the name o f day d
i f d == 0 :

return ”Sunday”
e l i f d == 1 :

return ”Monday”
e l i f d == 2

· · ·
<and so f o r t h>

The real work is in writing function FindDay(). This starts by finding the
number of days between January 1, 1800 and day (m, d, y); we will us a function
CountDays() to compute this. We will store this count in variable days. We will
include January 1, 1800 in this count but not day (m, d, y). Recall that January,
1, 1800 fell on a Wednesday; every 7 days after this we are back to a Wednesday.
This means that if days%7 is 0, then (m, d, y) also falls on a Wednesday. On
the other hand, if days % 7 is 1, then (m, d, y) falls on a Thursday; if it is 2
then (m, d, y) is a Friday, and so forth. Here is the code that comes from this
analysis.

def FindDay (m, d , y) :
This count s the number o f days between (1 ,1 , 1800)
and (m, d , y) , t a k e s the r ema inde r %7, and
r e t u r n s 0 f o r Sundays , 1 f o r Mondays , e t c .
days = CountDays (m, d , y)
day = days%7
i f day == 0 :

return 3 # Wednesday i s day 3 o f the week
e l i f day == 1 :

return 4 # Thursday
· · ·

e l i f day == 3 :
return 6 # Saturday

e l i f day == 4 :
return 0 # Sunday
· · ·

<and so f o r t h>

Function CountDays() is easier than you might think. Remember that this
function counts the number of days between January 1, 1800 and day (m, d, y).
We can break this into three steps:

112

• The sum of all the days of all the years starting with 1800, up to but
not including year y (we don’t want to include all of year y). We keep
a running total of these, adding 365 for non-leap years and 366 for leap
years.

• The sum of all the days of all the months of year y starting with January,
up to but not including month m. We add each of these onto the total.

• The number of days of month m up to, but not including day d.

The first two of these we accomplish with a loop; the third by adding d−1 onto
our total. The following code does this; we use helper-functions to compute the
number of days in a year (365 if it isn’t a leap year, 366 if it is) and the number
of days in a month (31 for January, 28 for non-leap year Februarys, 29 for leap
year Februarys, 31 for March, etc.):

def CountDays (m, d , y) :
This r e t u r n s the number o f days between
(1 , 1 , 1800) and (m, d , y) .
days = 0
for yea r in range (1800 , y) :

days = days + Days InYear (y ea r)
for month in range (1 , m) :

days = days + DaysInMonth (month , y)
days = days + d−1
return days

Notice how we can use the ability of a computer to execute many small steps
quickly to solve a problem in a way that human would think of solving it. Part
of the art of programming is learning to make use of this ability.

The rest of the program is completely straightforward. The complete pro-
gram is given below. This looks like a lot of code, but the development of it
was not difficult. At each step we write the code for one small portion of the
program. If this is more than just a few lines of code, we break it into pieces
and assign a function to write each piece. Note that we write the call of the
function, and then go back and write the function itself. As long as we have
a clear vision of what each function should do (comments help us to keep that
straight), the individual pieces will all fit together this way we designed them
precisely to do that.

4.4. THE CALENDAR PROGRAM 113

This program f i n d s the day o f the week c o r r e s p ond i n g to
any s p e c i f i c (m, d , y) date a f t e r January 1 , 1800 .

def I sLeapYea r (y) :
This r e t u r n s True i f y i s a l e a p year , F a l s e o t h e rw i s e
i f y % 400 == 0 :

return True
e l i f y % 100 == 0 :

return Fa l s e
e l i f y % 4 == 0 :

return True
else :

return Fa l s e

def DaysInMonth (m, y) :
This r e t u r n s the number o f days i n month m o f y ea r y .
Of cour se , the yea r on l y mat t e r s f o r Feb rua ry
i f m == 1 :

return 31
e l i f m == 2 :

i f i s L eapYea r (y) :
return 29

else :
return 28

e l i f m == 3 :
return 31

e l i f m == 4 :
return 30

e l i f m == 5 :
return 31

e l i f m == 6 :
return 30

e l i f m == 7 :
return 31

e l i f m == 8 :
return 31

e l i f m == 9 :
return 30

e l i f m == 10 :
return 31

e l i f m == 11 :
return 30

e l i f m == 12 :
return 31

else :
print (” daysInMonth : No such month %d” % m)

Program 4.4.1: The Calendar Program - beginning

114

def DayName(d) :
#This r e t u r n s a s t r i n g f o r the name o f day d
i f d == 0 :

return ”Sunday”
e l i f d == 1 :

return ”Monday”
e l i f d == 2 :

return ”Tuesday”
e l i f d == 3 :

return ”Wednesday”
e l i f d == 4 :

return ”Thursday ”
e l i f d == 5 :

return ” F r i d a y ”
e l i f d == 6 :

return ” Saturday ”

def Days InYear (y ea r) :
This r e t u r n s the number o f days i n the g i v en yea r .
i f I sLeapYea r (y ea r) :

return 366
else :

return 365

def CountDays (m, d , y) :
This r e t u r n s the number o f days between
(1 , 1 , 1800) and (m, d , y)
days = 0
for yea r in range (1800 , y) :

days = days + Days InYear (y ea r)
for month in range (1 , m) :

days = days + DaysInMonth (month , y)
days = days + d−1
return days

Program 4.4.1: The Calendar Program continued

4.4. THE CALENDAR PROGRAM 115

def FindDay (m, d , y) :
This count s the number o f days between (1 ,1 ,1800)
and (m, d , y) , t a k e s the r ema inde r %7, and r e t u r n s
0 f o r Sundays , 1 f o r Mondays , e t c .
days = CountDays (m, d , y)
day = days%7
i f day == 0 :

return 3
e l i f day == 1 :

return 4
e l i f day == 2 :

return 5
e l i f day == 3 :

return 6
e l i f day == 4 :

return 0
e l i f day == 5 :

return 1
e l i f day == 6 :

return 2
else :

print (”FindDay : bad day %d” % day)

def Pr intDay (m, d , y) :
This p r i n t s the day o f the week (m, d , y) f a l l s on
day = FindDay (m, d , y)
print (”That was a %s ” % DayName(day))

def ReadDate () :
This a sk s the u s e r f o r a date , then makes a t u p l e
o f numbers out o f the u s e r ’ s r e s pon s e .
print (” E i t h e r e n t e r a date i n the form m d y”)
s = input (” or e n t e r a b l ank to e x i t : ”)
t = []
for x in s . s p l i t () :

t = t + [int (x)]
return t

def main () :
done = Fa l s e
while not done :

date = ReadDate ()
i f len (date) == 0 :

done = True
e l i f len (date) == 3 :

Pr intDay (date [0] , date [1] , date [2])
else :

print (”Bad date . ”)

main ()

Program 4.4.1: The Calendar Program continued

