
206

8.2 Examples of Classes

Don’t be put off by the terminology of classes we presented in the preceding
section. Designing classes that appropriately break down complex data is a
skill that takes practice to learn. In most situations implementing classes is
easy and straightforward. One nice thing about coding with classes is that you
always have a place to start – the constructor (remember that in Python this is a
function called init (self ...)) should assign a value to each of the instance
variables of the class. Whatever description you have of the class should tell
you what those instance variables are.

Example 1: Write a class that will hold data about pets. The class should
include variables for the pet’s name, species (dog, cat, hamster, etc.), color
and age. To implement this we need to make a few decisions. One concerns
changeability of the variables: once we set the species for a pet, there is probably
no need to ever change it. The same is true of the pet’s color. It may or may
not be true for the name; for simplicity in this example we will assume that
names are not modifiable. Age, on the other hand, is certainly something that
changes. For all of the variables we will create getter methods – methods that
return the value of the variables. For the changeable variables we also need to
create setter methods – methods that allow us to set or change the value of the
variable. The next decision regards the arguments to the constructor. All of
these variables will be set in the constructor; some will get default values, some
will get values specified in the arguments to the constructor. We don’t want to
make calls to the constructor too long, so it would be better to not have too
many arguments. The pet’s name and species seem like things we would want
to name when we create a pet; age and color might be specified later, so we’ll
make name and species be arguments to the constructor. One could certainly
justify other ways of doing this. Finally, we need to decide how to represent
name, species , color and age. The pet’s age is certainly a number; the other
three can easily be respresented as strings.

All of these decisions lead to the following code for the constructor:

def i n i t (s e l f , name , s p e c i e s) :
s e l f . name = name
s e l f . s p e c i e s = s p e c i e s
s e l f . c o l o r = ” b l a ck ”
s e l f . age = 0

As we said, this passes name and species as arguments and uses default values
for the other two variables. Don’t be confused by code such as

s e l f . name=name

The left side of the = sign has the instance varible self .name. The right side
of the = sign has the value we are assigning this variable, which is the value of
the first argument to the constructor. If we construct a specific pet, such as

R = Pet (” Ros i e ” , ” ca t ”)

8.2. EXAMPLES OF CLASSES 207

the instance variable elf .name} will be et to ”Rosie”.
After the constructor we define any getter and setter for each of the instance

variables. This is very easy code. For variable name we don’t need need a setter
and the getter is a one-line function:

def getName (s e l f) :
return s e l f . name

for variable color we also have a setter:

def g e tCo l o r (s e l f) :
return s e l f . c o l o r

def s e t C o l o r (s e l f , c) :
s e l f . c o l o r = c

For variable age we have a getter and setter and also an increment method that
needs no arguments; it just adds 1 to the pet’s age:

def getAge (s e l f) :
return s e l f . age

def setAge (s e l f , x) :
s e l f . age = x

def i nc rementAge (s e l f) :
s e l f . age = s e l f . age + 1

Finally, we add a Print () method to format the instance data of an object:

def P r i n t (s e l f) :
print (”%s i s a %s %s . ”%(s e l f . name , s e l f . c o l o r , s e l f . s p e c i e s))

Putting all of this together, here is our class definition:

208

class Pet :
def i n i t (s e l f , name , s p e c i e s) :

s e l f . name = name
s e l f . s p e c i e s = s p e c i e s
s e l f . c o l o r = ” b l a ck ”
s e l f . age = 0

def getName (s e l f) :
return s e l f . name

def g e t S p e c i e s (s e l f) :
return s e l f . s p e c i e s

def g e tCo l o r (s e l f) :
return s e l f . c o l o r

def s e t C o l o r (s e l f , c) :
s e l f . c o l o r = c

def getAge (s e l f) :
return s e l f . age

def setAge (s e l f , x) :
s e l f . age = x

def i nc rementAge (s e l f) :
s e l f . age = s e l f . age + 1

def P r i n t (s e l f) :
print (”%s i s a %s %s . ”

%(s e l f . name , s e l f . c o l o r , s e l f . s p e c i e s))

Program 8.2.1: A simple Pet class

Notice how simple and repetitive most of this code is. lt is not difficult to write
code for a class once you understand what the class does; this is one of the great
attractions of this style of coding.

Here is a small main() program that uses this class defintion:

8.2. EXAMPLES OF CLASSES 209

def main () :
R = Pet (” Ros i e ” , ” ca t ”)
R . s e t C o l o r (” b l a ck ”)

N = Pet (”Norton” , ” ca t ”)
N. s e t C o l o r (” orange ”)
N. incrementAge ()
N. incrementAge ()

R . P r i n t ()
N. P r i n t ()

main ()

An application program for the Pet class

Example 2: Write a class that represents people with names and ages and
also models the ability of one person to marry another. In the preceding section
we gave a Person class:

class Person :
def i n i t (s e l f , myName) :

s e l f . name = myName
s e l f . age = 0

def SetAge (s e l f , myAge) :
s e l f . age = myAge

def GetOlder (s e l f) :
s e l f . age = s e l f . age + 1

def P r i n t (s e l f) :
print (”%s i s %d y e a r s o l d . ”%(s e l f . name , s e l f . age))

The Person class from Program 8.1.1

We need to modify this class to include the idea of marriage. Actions in classes
tend to take the form of methods – when we call a method of an object, we tell

210

the object to perform that method on its data. For this class we need a method
marry() that tells one object to marry another. In terms of data what does this
do? After this method has called and returned, the object still needs to know
who it married. This means we need an instance variable spouse. This will need
to be initialized in the constructor; the easiest default value is None, which is the
value Python uses for objects that are not yet constructed. For this example we
won’t make use of age, so we will eliminate to keep our program shorter. There
would be no problem with keeping it. This makes our constructor

def i n i t (s e l f , myName) :
s e l f . name = myName
s e l f . spouse = None

We will only let Persons marry other Persons, which means that we have access
to the instance variables of the marriage partner. To enable self to marry
Person x, we need to set self .spouse=x, but that is not sufficient. We also need
to make self be x’s spouse: x.spouse=self:

def Marry (s e l f , x) :
A per son can on l y marry ano the r Person
s e l f . spouse = x
x . spouse = s e l f

It is easy to tell if a Person is married. The following method returns True if
the current person is married, and False if that person is single:

def I sMa r r i e d (s e l f) :
return s e l f . spouse != None

If x is married we can always find the name of x’s spouse as x.spouse.name, but
this is a bit unwieldy. Here is a method that returns the name of self ’s spouse.
Of course there might not be a spouse, so we include an option for this case as
well:

def SpouseName (s e l f) :
i f s e l f . I sMa r r i e d () :

return s e l f . spouse . name
else :

return ” not mar r i ed ”

Note how this uses the IsMarried () method: we want to know if self is married,
so we call the self . IsMarried () method.

Finally, here is a Print method that makes use of several of the methods we
have implemented:

def P r i n t (s e l f) :
i f s e l f . I sMa r r i e d () :

print (”%s i s mar r i ed to %s ” %
(s e l f . name , s e l f . SpouseName ()))

else :
print (s e l f . name)

8.2. EXAMPLES OF CLASSES 211

Here is the complete code for our new class Person:

class Person :
def i n i t (s e l f , myName) :

s e l f . name = myName
s e l f . spouse = None

def Marry (s e l f , x) :
A per son can on l y marry ano the r Person
s e l f . spouse = x
x . spouse = s e l f

def I sMa r r i e d (s e l f) :
return s e l f . spouse != None

def SpouseName (s e l f) :
i f s e l f . I sMa r r i e d () :

return s e l f . spouse . name
else :

return ” not mar r i ed ”

def P r i n t (s e l f) :
i f s e l f . I sMa r r i e d () :

print (”%s i s mar r i ed to %s ” %
(s e l f . name , s e l f . SpouseName ()))

else :
print (s e l f . name)

Program 8.2.2: Person class with marriage

And here is a main() function that makes use of this class

212

def main () :
x = Person (”bob”)
y = Person (” s u z i e ”)
z = Person (” j o e ”)

y . Marry (z)

x . P r i n t ()
y . P r i n t ()
z . P r i n t ()

main ()

An application program for the Person class

Example 3: Write a class that represents names of people and can recog-
nize family names and given names. Our last example defines a Name class
where the instance variables hold the given name (self . given) and the fam-
ily name (self . family) of each object. The constructor takes a string, such
as ”Fred Flintstone ” and separates it into a string holding the given name or
names, and a string holding the family name. Note that there may be more
than one given name, as in ”Charles Philip Arthur George Windsor”. We could
represent this as a list of strings, but instead we will put all of the given names
into one string and the family name in another. In most situations we want one
of three things:

• The family name only

• The first name (the first of the given names) only

• The full name

All of those will be easily available in our representation.
The constructor is mostly a straightforward application of the String class

strip () and split () methods. The idea is to split the argument into a list of
strings, then pull of the last of these as the family name and concatenate the
rest together, separated by spaces, as the given name. If str is the input string
(such as ”Fred Flintstone”), the following code does this:

names = str . s p l i t ()
n = len (names)
s e l f . f am i l y = names [n−1]
g i v en = ””
for name in names [0 : n−1] :

8.2. EXAMPLES OF CLASSES 213

g i v en = g i v en + name + ” ”
s e l f . g i v en = g i v en

We need to modify this slightly to account for anomalies: str might contain
only one name, as in ”Madonna”, or it might even be the empty string. Single
names are easy: we just put whatever we have into the family name, and make
the given name be the empty string. An empty str is more of a problem. We
can split an empty string, but the result is an empty list and our code above fails
for an empty list. We fix this by first stripping str to eliminate any unnecessary
spaces at the front and back, and then testing whether the result is an empty
string. If so we assign the empty string to both the given name and family
name and exit. If not, we use the code above. Here is the final code for the
constructor:

def i n i t (s e l f , str) :
str = str . s t r i p ()
i f str == ”” :

s e l f . f am i l y = ””
s e l f . g i v en = ””

else :
names = str . s p l i t ()
n = len (names)
s e l f . f am i l y = names [n−1]
g i v en = ””
for name in names [0 : n−1] :

g i v en = g i v en + name + ” ”
s e l f . g i v en = g i v en

The remaining methods handle the tree cases we mention above: family
name only, given name only, first name only, or full name. Here is our class:

214

class Name :
def i n i t (s e l f , str) :

str = str . s t r i p ()
i f str == ”” :

s e l f . f am i l y = ””
s e l f . g i v en = ””

else :
names = str . s p l i t ()
n = len (names)
s e l f . f am i l y = names [n−1]
g i v en = ””
for name in names [0 : n−1] :

g i v en = g i v en + name + ” ”
s e l f . g i v en = g i v en

def GivenName (s e l f) :
return s e l f . g i v en

def LastName (s e l f) :
return s e l f . f am i l y

def FirstName (s e l f) :
i f s e l f . g i v en == ”” :

return ””
else :

names = s e l f . g i v en . s p l i t ()
return names [0]

def FullName (s e l f) :
i f s e l f . g i v en == ”” :

return s e l f . f am i l y
else :

return s e l f . g i v en+s e l f . f am i l y

The Name class

Here is a short application program,which just works with the names as
names:

8.2. EXAMPLES OF CLASSES 215

def main () :
L = []
L . append (Name(”Fred F l i n t s t o n e ”))
L . append (Name(”Barney Rubble ”))
L . append (Name(”Wilma F l i n t s t o n e ”))
L . append (Name(”Dino”))
L . append (Name(””))
L . append (Name(”Bam Bam Rubble ”))
L . append (Name(”Mr . S l a t e ”))

for x in L :
print (x . LastName ())

main ()

Program 8.2.3: Application program using the Name class

This will print:

F l i n t s t o n e
Rubble
F l i n t s t o n e
Dino

Rubble
S l a t e

Here is a more interesting application. For this example we put the class by
itself in a file called ”MyNameClass.py”. In a more authentic situation we would
probably call the file ”Name.py”, but I want to make a distinction between the
name of the file and the name of the class. We write a separate application
program, making use of the Name class. In this case our application is another
Person program; this time the Person class uses Name to store the person’s
name. Since the Name class is not in the same file as the application, the latter
program needs to import it. We use the syntax

from MyNameClass import ∗

and then refer directly to the Name class. Alternatively, we could use the
following syntax for importing:

import MyNameClass

and then refer to the names as MyNameClass.Name. For example, the second
line of the constructor would be

s e l f . name = MyNameClass .Name(myName)

216

Here is the application program:

from MyNameClass import ∗

class Person :
def i n i t (s e l f , myName) :

s e l f . name = Name(myName)
s e l f . age = 0

def SetAge (s e l f , a) :
s e l f . age = a

def GetOlder (s e l f) :
s e l f . age = s e l f . age + 1

def P r i n t (s e l f) :
print (”%s %s ” %(s e l f . name . Fi rstName () ,

s e l f . name . LastName ()))

def main () :
L = []
x = Person (”Donald E r v i n Knuth”)
x . SetAge (77)
L . append (x)

y = Person (”Grace Brews te r Murray Hopper”)
y . SetAge (109)
L . append (y)

z = Person (”Alan Mathison Tur ing ”)
z . SetAge (103)

L . append (z)
for pe r son in L :

pe r son . P r i n t ()

main ()

Program 8.2.4: Another application program using the Name class

