252

9.3 Drawing

Tk provides a rich and easy-to-use set of primitive drawing operations. To use
them we need to create a canvas widget, and then draw upon it. Since all of the
drawing operations need access to the canvas widget, it is easiest to make this
a global variable. The code for constructing a canvas is simple:

global canvas
canvas=Canvas(self ,width=500,height=500,background="white")
canvas.grid (row=1, column=0)

The canvas is generally a child of the main GUI window. The only objects in this
window typically are the MenuBar and the canvas. I usually put the MenuBar
in row 0 and the canvas in row 1, below the MenuBar.

Canvases have a natural (x, y) coordinate system. The x-coordinate mea-
sures the distance in pixels from the left edge of the canvas; the y-coordinate
measures the distance of the pixel from the top of the canvas. As we move to the
right the x-coordinate increases; as we move DOWN the y-coordinate increases.
This surprises some people who remember y-coordinates increasing as you move
up in the traditional Cartesian coordinates in analytic geometry.

Canvas objects have methods for drawing various shapes. The most com-
mon shapes are rectangles (which include squares), ovals (including circles) and
polygons. For rectangles you must give first the coordinates of the upper-left
corner of the rectangle, then the coordinate of the lower-right corner. The de-
fault drawing color is black, but you can change this to any other color by giving
the fill parameter of the drawing command the name of the color to draw.

For example, the following function draws a rectangle with upper-left corner
at (x0, y0) and lower-right corner at (x1, y1):

def Rectangle(x0, y0, x1, yl, color):
canvas.create_rectangle(x0, y0, x1, yl, fill=color)

We might call this with:
Rectangle (300, 300, 400, 450, red)

There is a corresponding canvas. create_oval () method that draws ellipses. This
takes the same arguments as canvas. create_rectangle (): the coordinates of
the upper-left and lower-right corners, then fill —color. Since we are used to
thinking of a circle as points a fixed distance from the center of the circle, we
can write a function that takes the center and radius of the circle and builds
the rectangle that surrounds the circle. Here is such a function:

def Circle(x, y, radius, color):
canvas.create_oval(x—radius, y—radius, \
x+radius , y+radius, fill=color)

Altogether, the following program will create a canvas and draw a circle and
square on it:

9.3. DRAWING 253

from tkinter import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self , None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)
QuitButton.grid (row = 0, column = 0)

global canvas

canvas=Canvas(self, width=500, height=500,)\
background="white")

canvas.grid (row=1, column=0)

def Circle(x, y, radius, color):
canvas.create_oval(x—radius, y—radius, \
x+radius , y+radius, fill=color)
canvas.update()

def Rectangle(x0, y0, x1, yl, color):
canvas.create_rectangle(x0, y0, x1, yl, fill=color)

def main():
window = GUI()
Circle (100,100, 50, "red”)
Rectangle (300, 300, 400, 450, "green")
window . mainloop ()

main ()

Program 9.3.1: Simple Drawing Program

Here is a picture of the canvas this creates:

254

[w)
Quit

The canvas. create_rectangle () and similar drawing methods return a value
that can be used to manipulate the shape has been drawn. In particular, if we
draw a 100x100 green rectangle with

r =canvas.create_rectangle(100,150,200,250, fill="green")
then we can move this rectangle 10 units horizontally and 30 vertically with
canvas.move(r, 10, 30)
We can change its color to red with
canvas.itemconfigure(r, fill="red")

Since this allows us to give functionality to the shapes, it makes sense to repre-
sent each category of shapes by a class. In the following code we make classes
Rectangle, Square, Oval, Circle and Polygon. To avoid repeating the same code
for each class, we make a top-level Shape class that contains all of the uniform
code. Each of our basic shapes is a subclass of Shape, and each is constructed
with only the code that differs from the uniform Shape code.

9.3. DRAWING 255

from tkinter import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self , None)
self.grid ()

MenuBar = Frame(self)
MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)
QuitButton.grid (row = 0, column = 0)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

class Shape:

def __init__(self, vertices, color):
self.color = color
self.vertices = vertices
self.my_shape = None

def Moveto(self, a, b):
This moves the shape to point (a,b)

[x, y] = self.vertices [0]
d0 = a—x
dl = b—y

self.Moveby(d0, dl)

def Moveby(self, a, b):

This moves the shape a units horizontally
and b units vertically.
canvas.move(self.my_shape, a, b)
canvas.update ()
for v in self.vertices:

v[0] = v[0] + a

v[l] = v[1l] + b

Program 9.3.2: Shape Classes

256

def ChangeColor(self, color):
This changes the shape's color.

Possible colors include "white”, "black”,

"red”, "green”, "blue”, "yellow"”, "cyan”,

"magenta”, "light green”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update ()

self.color = color

def delete(self):
canvas.delete(self.my_shape)

class Rectangle(Shape):
def __init__(self, x, y, x1, yl, color):
This creates a square with corners (x, y) and (x1, yl)
Shape. __init__(self, [[x, y], [x1, yl]]., color)
self.my_shape = canvas.create_rectangle(x, y, x1, yl, \
fill = color)

def pos(self):
return (self.vertices [0][0], self.vertices[0][1])

class Oval(Shape):

def __init__(self, x, y, hrad, vrad, color):
This creates an oval centered at (x, y)
with horizontal radius hrad and
vertical radius vrad
Shape. __init__(self, [[x—hrad, y—vrad], \
[x+hrad, y+vrad]], color)

v0 = self.vertices [0]
vl = self.vertices[1]
self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[O0], v1[1l], fill = color)
def pos(self):
v0 = self.vertices [0]
vl = self.vertices[1]

return ((v0[0]+v1[0])/2, (vO[1]+vl[1])/2)

class Square(Rectangle):
def __init__(self, x, y, side, color):

This creates a square with upper left corner at (x, y)
and length side

Rectangle. __init__(self, x, y, xt+side, y+side, color)

Program 9.3.2: Shape Classes, continued

9.3. DRAWING 257

class Circle(Oval):
This creates a circle centered at (x, y)
with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

class Polygon(Shape):

To create a polygon make a list of its vertices
(each vertext itself is a list [x, y];

you need a list of these)

and call canvas.create_polygon ().

This returns a reference to the polygon

that you will need if you ever want to

change or delete it.

def __init__(self 6 vertices, color):
Shape. __init__(self, vertices, color)
self.my_shape=canvas.create_polygon(vertices , fill=color)

canvas.update()
self.pos = (vertices[0][0], vertices[O0][1])

def main():
window = GUI()
Circle (250,250, 100, "red”)
window . mainloop ()

main ()

Program 9.3.2: Shape Classes, continued

