258

9.4 Animation

It is tempting to try to animate objects by giving each object a loop that
describes its motion, as in

def randomCircle(self):
c = Circle(250, 50, 30, "red”)
while True:
c.Moveby(0, —0.1)
(x, y)= c.pos()
if y< 0
break

This suffers from two problems. First, it isnt interruptable; if we try to exit
from the program, perhaps via a Quit button, the program will wait until this
animation is finished before exiting. Even worse, if we have several objects with
code like this only one will move at a time, continuing its motion until it is
finished before the next object starts to move.

To make our animations more effective, we need three simple components:

1. We will give every object a NextStep() method that performs one small
step of the objects entire motion.

2. We will store all of the moving objects in an AnimationList. One step of
the global animation will consist of running through the AnimationList and
telling each object in it to take its NextStep().

3. Instead of looping through this process, which would not be interruptable,
we will make use of a special method of the Canvas class:

canvas. after(<time to pause>, <function >)

This method pauses for a small amount of time (measured in milliseconds),
then calls the given function.

This does everything we want. If our individual NextStep() methods arent too
complex and if we dont have too many objects in the animation list, this can
make the motions look continuous and smooth. By adjusting the first argument
of the canvas. after () call we can fine-tune the speed of the animation. All
of our widgets that need user control will still be functional; the system will
respond to them after each pass through the AnimationList.

For a first example, we have a program with a drawing menu with two
options: Square and Circle. When the user selects one of these options a random
shape of that type is drawn and added to the AnimationList. The NextStep
function is particularly simple: it moves the shape downward a small amount.
When the object gets to the bottom of the canvas it is deleted. Here is the
NextStep() method for each object:

def NextStep(self):
self.Moveby (0, 2)

9.4. ANIMATION 259

and here is the Animate() function:

def Animate():
for object in AnimationList:
object . NextStep ()
(x, y) = object.pos()
if y > 500:
i = AnimationList.index(object)
del AnimationList[i]
object.delete ()
canvas.after(50, Animate)

What follows is the complete program for this, omitting the definition of the
drawing classes that we saw in the last section:

from tkinter import x
from time import x
from random import x

class GUI(Frame):
def __init__(self):

Frame. __init__(self, None)
self.grid()
MenuBar = Frame(sel

f)
MenuBar. grid (row = 0, column = 0, sticky=W)

self.MakeDrawingMenu (MenuBar)

QuitButton. grid (row = 0, column = 0)

global canvas

canvas=Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

global Circlelist
CircleList = []

QuitButton=Button (MenuBar, text="Quit" ,command=self . quit)

Program 9.4.1: Squares and Circles

260

def

def

def

MakeDrawingMenu (self , MB):
Draw_button = Menubutton (MB, text='Draw’)
Draw_button.menu = Menu(Draw_button)

Draw_button ['menu’] = Draw_button.menu
Draw_button.grid (row = 0, column = 1)
Draw_button.menu.add_command(label="Square', \
command=self.randomSquare)
Draw_button.menu.add_command(label="Circle ', \

command=self.randomCircle)

randomSquare(self):

colors=["red"” ," green” ," blue” ," yellow" ,”" orange"” ," brown" |
x = randint (1, 500)

y = randint (1, 500)

size = randint (5, 50)

color = colors[randint(0, len(colors)—1)]

s = Square(x, y, size, color)

AnimationList.append(s)

randomCircle(self):

colors=["red” ," green” ," blue" ," yellow" ," orange” ," brown"]
x = randint (1, 500)

y = randint (1, 500)

size = randint (3, 25)

color = colors[randint(0, len(colors)—1)]

c¢ = Circle(x, y, size, color)

AnimationList.append(c)

Program 9.4.1: Squares and Circles, continued

9.4. ANIMATION 261

def Idle ():
for object in AnimationList:
object . NextStep ()
(x, y) = object.pos()
if y > 500:
i = AnimationList.index(object)
del AnimationList[i]
object.delete ()
canvas.after(50, ldle)

def main():
global AnimationlList
AnimationList = []
window = GUI()
Idle ()
window . mainloop ()

main ()

Program 9.4.1: Squares and Circles, concluded

Here is a picture of this programs window as it runs:

T]

L]

The next example has particles bouncing off walls indicated by the edges of the
canvas. This time we make a class Particle to represent the moving bodies.
Particle is just a subclass of Circle, with a few added properties. To make the
particle move we maintain a vector <x.dir, y_dir> that holds a change amount
for the x- and y-directions. At each step of the animation we add x_dir to the
particles x-coordinate and y_dir to its y-coordinate. This moves the particle in
a straight, not necessarily horizontal or vertical, line. To bounce off the vertical
walls, on which the x-coordinate is a constant, we maintain the same value
of y_dir and change x.dir to x.dir . Similarly, to bounce off the horizontal
walls, where the y-coordinate is constant, we change y_dir to y.dir . Here is
the resulting Particle class:

262

class Particle(Circle):

def

def

__init__(self):
x = randint (0, 500)
y = randint (0, 500)
self.radius = 10

colors = ["red” ,"green” " blue” ,"yellow" ,\
"purple” " orange” ," magenta”]

color = colors[randint(0, len(colors)—1)]

Circle. __init__(self, x, y, self.radius, color)

self.x_dir = randint(—3, 3)
self.y_dir = randint(—3, 3)

NextStep(self):
self.Moveby(self.x_dir, self.y_dir)

(x, y) = self.pos()
if x < 5 or x > 495:

self.x_dir = —self.x_dir
if y <5 or y > 495:
self.y_dir = —self.y_dir

Here is the complete program.

9.4. ANIMATION 263

from tkinter import x
from random import x

class GUI(Frame):
def __init__(self):

def

Frame. __init__(self, None)
self.grid()

MenuBar = Frame(self)

MenuBar. grid (row = 0, column = 0, sticky=W)

QuitButton = Button(MenuBar, text="Quit", \
command = self.quit)

QuitButton.grid(row = 0, column = 0)

MoreButton = Button(MenuBar, text="More", \
command = self.MoreParticles)
MoreButton. grid (row = 0, column = 1)

PauseButton = Button(MenuBar, text="Pause”, \
command = Pause)
PauseButton.grid (row = 0, column = 2)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

MoreParticles(self):
p = Particle()
AnimationList.append(p)

Program 9.4.2: Bouncing Off the Walls

264

class Shape:

def

def

def

def

def

def

__init__(self, vertices, color):

self.color = color
self .vertices = vertices
self.my_shape = None

Moveto(self , a, b):

This moves the shape to point (a,b)
(x, y) = self.pos()

d0 = a—x

dl = b—y

self.Moveby(d0, dl)

Moveby (self , a, b):
This moves the shape a units horizontally
and b units vertically
canvas.move(self.my_shape, a, b)
canvas.update()
for v in self.vertices:

v[0] = v[0] + a

v[l] = v[1l] + b

ChangeColor(self, color):
This changes the shape's color. Possible

colors include "white”, "black”, "red”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update ()

self.color = color

delete(self):
canvas.delete(self.my_shape)

pos(self):
return (self.vertices [0][0], self.vertices[0][1])

class Oval(Shape):

def

def

__init__(self, x, y, hrad, vrad, color):

This creates an oval centered at (x, y) with \

horizontal radius hrad and vertical radius vrad

Shape. __init__(self ,[[x—hrad ,y—vrad], [xt+hrad, 6 y+vrad]],\
color)

v0 = self.vertices [0]

vl = self.vertices[1]

self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[0], v1[1], fill = color)

pos(self):

v0 = self.vertices [0]

vl = self.vertices[1]

return ((vO[0]4+v1[0])/2, (vO[1l]+v1l[1l])/2)

Program 9.4.2: Bouncing Off the Walls, continued

9.4. ANIMATION 265

266

class Circle(Oval):
Creates a circle centered at (x, y) with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

class Particle(Circle):
def __init__(self):

x = randint (0, 500)

y = randint (0, 500)
self.radius = 10

colors = ["red", "green", "blue”, "yellow”, \
"purple”, "orange”, "magenta”]

color = colors[randint(0, len(colors)—1)]

Circle. __init__(self, x, y, self.radius, color)

self.x_dir = randint(—-3, 3)+ 0.5
self.y_dir = randint(-3, 3)+ 0.5

def NextStep(self):
self . Moveby(self.x_dir, self.y_dir)

(x, y) = self.pos()
if x <5 or x > 495:

self.x_dir = —self.x_dir
if y <5 or y > 495:
self.y_dir = —self.y_dir
def Animate():
if pause:
return

for x in Animationlist:
x. NextStep ()
canvas.after(1, Animate)

def Pause():
global pause

if pause:
pause = False
Animate ()
else:
pause = True
def main():

global AnimationList
AnimationList = []
global pause

pause = False

window = GUI()
Animate ()
window . mainloop ()

main ()

Program 9.4.2: Bouncing Off the Walls, concluded

