9.5. EVENTS

9.5 Events

267

An event is any user interaction with a program. This might involve pressing a
key, clicking the mouse button, and moving or dragging the mouse. Every time
the user initiates any of these actions the system generates an event signal. Some
widgets are designed to react to these signals. A button, for example, waits for
a mouse button to be clicked on it; when this happens the buttons callback
function is called. Any widget can be programmed to listen for specific events
and then call designated functions when these events occur. In this section we
will see how this event programming works.

The first step in getting a widget to respond to event signals is to tell the
widget to listen for signals. If w is a widget, then

w. focus_set()

tells the widget to pay attention to signals.
The next step is to register a function as the callback for a specific event.
Again, if w is the widget this is done with

Widget. bind (w, <event descriptor >, <function >)

Here Widget is the superclass for all widget classes. The <event descriptor > is
a string, such as "Button—1", which refers to the left mouse button (the only
mouse button on a Mac). Here is a table of event descriptors:

Descriptor

Event

7 < KeyPress —a >"

The

users presses the ”a” key

7 < KeyPress — A >"

The

user presses the 7A” key

The

other letters and digits are similar.

" < KeyPress — space >"

The

user presses the space bar

7 < KeyPress — Return > "

The

user presses the Return (or Enter) key

" < KeyPress —Up >7

The

user presses the up-arrow

7 < KeyPress — Down >"

The

user presses the down-arrow

" < KeyPress — Left > 7

The

user presses the left-arrow

? < KeyPress — Right >

The

user presses the right-arrow

" < Any — KeyPress > 7

The

user presses any key.

? < Button —1>7

The

user clicks the left mouse button (or only mouse button)

? < Button —2 >7"

The

user clicks the middle mouse button

? < Button — 3 >

The

user clicks the right mouse button

? < Bl — Motion >"

This represents a dragging event with the left mouse button

The callback function for any event binding should take one argument, which
is an object representing the event. We usually call this argument "event”. The
specifics of the object will vary according to the type of event that has occurred.
With mouse events event.x and event.y are the coordinates of the mouse at
the time the event occurred. With keyboard events event.keysym is a string
representing the key that was pressed. For letter keys this is the letter as a

string: "A”, or "a

, "space”, "Return” and so forth.

268

Here, for example, is the code needed to empower the ”q” key to exit the
program:

class GUI(Frame):

global canvas

canvas = Canvas(self, width=500, height=500, background="white
canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget . bind (canvas, "<KeyPress—q>", self.quitter)

def quitter(self, event):
self.quit()

This binds the " <KeyPress—q>" description to a function that calls the quit()
method of the Frame class. Note that the callback for the binding must take an
event argument,so we cant directly connect to the self . quit () method.

If you want to interact with objects that have been drawn on the canvas,
it is important to be able to determine which objects are under the cursor
when the mouse button is clicked. While it would be possible to program
this yourself, the tk system provides some hooks that make this easy. When
shapes are created it is possible to give them ”tags”, which are strings. The
canvas. getttags (object) method returns a list of all of the tags that have
been given to a specific object. The canvas. find_withtag (tag) method re-
turns a list of all of the objects that have the given tag. As the mouse moves
around the canvas, the system gives a tag " current” to the topmost (most re-
cently drawn) object that the mouse is currently over. So we can find the
object the mouse is currently over by finding the shape in the first entry of
canvas. find_withtag (" current”)

Here is how we might use all of this to create a simple circle-drawing program.
We set up the interface to have a Draw button for circles and a set of radio
buttons to select the current drawing color. To allow for dragging circles after
they have been drawn we bind the left mouse button to a function that selects
the circle into which we have clicked, and we bind the dragging operation with
the left mouse button to a function that moves the current circle. We also bind
the "d" key on the keyboard to a function that deletes the circle the mouse is
currently over. This much of our interface definition is as follows:

class GUI(Frame):
global ColorChoice
ColorChoice = StringVar ()
ColorChoice.set("red"”)
rl=Radiobutton (MenuBar, value = "red" ,text="red" ,\
variable=ColorChoice)
rl.select ()
rl1.grid (row=0, column = 1)

9.5. EVENTS 269

r2=Radiobutton (MenuBar, value="green"” ,text="green"” ,\

variable = ColorChoice)

r2.grid (row=0, column = 2)

r3=Radiobutton (MenuBar, value="blue" ,text = "blue” ,\
variable = ColorChoice)

r3.grid (row=0, column = 3)
rd=Radiobutton (MenuBar, value="cyan" ,text="cyan" ,\

variable = ColorChoice)

r4 . grid (row=1, column = 1)

r5=Radiobutton (MenuBar, value="magenta" , text="magenta” ,\
variable = ColorChoice)

r5.grid (row=1, column = 2)

r6=Radiobutton (MenuBar, value="yellow’
variable = ColorChoice)

r6.grid (row=1, column = 3)

,text="yellow" ,\

CircleButton = Button(MenuBar, text="Circle”, \
command = self.DrawCircle)
CircleButton.grid(row = 0, column = 4)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget. bind (canvas, "<Button—1>", self.SelectCircle)

Widget . bind (canvas, "<Bl—Motion>", self.Drag)

Widget . bind (canvas, "<KeyPress—d>", self.DeleteCircle)

We draw circles (after the Draw button is clicked) at a random position using
the ColorChoice selected with the radio buttons:

def DrawCircle(self):
x = randint (0, 500)
y = randint (0, 500)
color = ColorChoice.get()
c¢ = Circle(x, y, 20, color)
CircleList.append(c)

We move a circle by clicking inside it, then dragging the mouse with the
button depressed. The initial click calls the function

270

def SelectCircle(self, event):
global current
L = canvas.find_withtag (" current”)
for ¢ in CirclelList:
if c.my_shape in L:

current = c
break
global last_pos
last_pos = (event.x, event.y)

This sets a global variable current, which is the object in our Circle class that
contains the "current” tag. It also sets the initial value of a global variable
last_pos, that we use in the dragging operation.

The mouse-drag callback looks at the current mouse position and the current
circle (set in the SelectCircle () function) by the difference between the current
position and the last position. It would be slightly simpler to move the current
circle to the current mouse position, but that has the unfortunate effect of
making the circle jump so that its center is at the mouse position when you
start dragging. This unexplained jump is awkward for users, so instead we keep
track of the mouses relative motion and use that as the basis for the circle
movement. Of course, each time the Drag() function is called we need to reset
the value of our global variable last_pos.

def Drag(self, event):
global last_pos
current . Moveby(event.x—last_pos[0], \
event.y—last_pos[1])
last_pos = (event.x, event.y)

Finally, we delete a circle in two steps. We need to both erase it from the
screen and remove it from our CircleList . Erasing it means finding its shape
and calling the canvas. delete () method on this shape. To remove it from the
CircleList , we must first find the Circle object that contains this shape, then
the index of this object in our CircleList , and finally delete this element from
the list. Altogether we get the following code:

def DeleteCircle(self, event):
print " deleting”

shape = canvas.find_withtag(”" current”)
if shape = ():
return

canvas.delete(shape[0])
for ¢ in CirclelList:
if c.my_shape = shape[0]:
i = CircleList.index(c)
del CircleList[i]

Putting all of these together, here is the full program:

9.5. EVENTS

271

from tkinter import x
from random import x

class GUI(Frame):
def __init__(self):
Frame. __init__(self, None)
self.grid()

MenuBar = Frame(sel

f)
MenuBar. grid (row = 0,

column = 0, sticky=W)
QuitButton=Button (MenuBar, text="Quit", \

command = self.quit)
QuitButton.grid(row = 0, column = 0)

global ColorChoice
ColorChoice = StringVar ()
ColorChoice.set("red")

rl=Radiobutton (MenuBar, value = "red” , text="red" ,\

variable=ColorChoice)
rl.select ()
r1.grid (row=0, column = 1)

r2=Radiobutton (MenuBar, value="green" ,text="green",

variable = ColorChoice)

r2.grid (row=0, column = 2)

r3=Radiobutton (MenuBar, value="blue"” ,text = "blue” ,\
variable = ColorChoice)

r3.grid (row=0, column = 3)

r4=Radiobutton (MenuBar, value="cyan" ,text="cyan" ,\

variable = ColorChoice)
r4 . grid (row=1, column = 1)

rb=Radiobutton (MenuBar, value="magenta” , text="magenta” ,\

variable = ColorChoice)
r5.grid (row=1, column = 2)

r6=Radiobutton (MenuBar, value="yellow"” , text="yellow" ,\

variable = ColorChoice)
r6.grid (row=1, column = 3)

Program 9.5.1: Drawing With Circles

272

def

def

def

CircleButton = Button(MenuBar, text="Circle”, \
command = self.DrawCircle)
CircleButton.grid(row = 0, column = 4)

global canvas

canvas = Canvas(self, width=500, height=500, \
background="white")

canvas.grid (row=1, column=0)

canvas.focus_set ()

Widget . bind (canvas, "<Button—1>", self.SelectCircle)
Widget . bind (canvas, "<Bl—Motion>", self.Drag)
Widget. bind (canvas, "<KeyPress—d>", self.DeleteCircle)

global Circlelist
CircleList = []

DrawCircle(self):

x = randint (0, 500)

y = randint (0, 500)

color = ColorChoice.get()

c = Circle(x, y, 20, color)
CircleList .append(c)

SelectCircle(self, event):
global current
L = canvas.find_withtag (" current”)
for ¢ in CirclelList:
if c.my_shape in L:

current = c¢
break
global last_pos
last_pos = (event.x, event.y)

Drag(self, event):

global last_pos

current . Moveby(event.x—last_pos[0], event.y—last_pos|[1])
last_pos = (event.x, event.y)

Program 9.5.1: Drawing With Circles, continued

9.5. EVENTS 273

def DeleteCircle(self, event):
print "deleting”

shape = canvas.find_withtag(”"current”)
if shape = ():
return

canvas.delete(shape[0])
for ¢ in Circlelist:
if c.my_shape = shape[0]:
i = CircleList.index(c)
del CircleList[i]

class Shape:

def __init__(self, vertices, color):
self.color = color
self.vertices = vertices
self.my_shape = None

def pos(self):
return (self.vertices[0][0], self.vertices[0][1])

def Moveto(self, a, b):
This moves the shape to point (a,b)
(x, y) = self.pos()
d0 = a—x
dl = b—y
self.Moveby(d0, dl)

def Moveby(self, a, b):

This moves the shape a units horizontally
and b units vertically
canvas.move(self.my_shape, a, b)
canvas.update()
for v in self.vertices:

v[0] = v[0] + a

v[1l] = v[1] + b

def ChangeColor(self, color):
This changes the shape's color.
Possible colors include

"white”, "black”, "red”, "green”, etc.
canvas.itemconfigure(self.my_shape, fill = color)
canvas.update()

self.color = color

Program 9.5.1: Drawing With Circles, continued

274

class Oval(Shape):

def __init__(self, x, y, hrad, vrad, color):
This creates an oval centered at (x, y) with
horizontal radius hrad and vertical radius vrad
Shape. __init__(self, [[x—hrad, y—vrad], \
[x+hrad, y+vrad]], color)

v0 = self.vertices [0]
vl = self.vertices[1]
self.my_shape = canvas.create_oval(v0[0], vO[1], \
vl[0], v1[1l], fill = color)
def pos(self):
v0 = self.vertices [0]
vl = self.vertices[1]

return ((v0[0]+v1[0])/2, (vO[l]+vl[1l])/2)

class Circle(Oval):

Creates a circle centered at (x, y) with the given radius
def __init__(self, x, y, radius, color):
Oval. __init__(self, x, y, radius, radius, color)

def main():
window = GUI()
window . mainloop ()

main ()

Program 9.5.1: Drawing With Circles, conclusion

