
Improving Video Performance in
VNC Under High Latency Conditions

Cynthia Taylor, Joe Pasquale
University of California, San Diego

  Introduction
  What Is Thin Client Computing?
  Thinner Clients
  Collaboration
  Desktop versus Thin Client
  The Problem with Supporting Video
  Server Push
  Client Pull
  Virtual Network Computing
  Defining Performance

  Adding a Message Accelerator
  Experimental Design & Results
  Conclusion

2

The Problem with Supporting Video
  Video is hard for Thin Client Systems

  Frequent updates
  Many pixel changes per update
  All server generated
  Becomes drastically worse over high latency

3

Server Push

  X-Windows is a server push system

Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans.
Graph., 5(2):79-109, 1986.

client server
update

Server Push

4

Client-Pull

  VNC is a client-pull system.

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper.
Virtual network computing. Internet Computing, 2(1):33-38, 1998."

client server

update

request

Client Pull

5

Virtual Network Computing
  VNC is a widely-used thin client system.
  It is cross-platform and has several available open-

source implementations.
  It was developed by Tristan Richardson at the Olivetti

Research Lab.

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper. Virtual
network computing. Internet Computing, 2(1):33-38, 1998. "

Tristan Richardson. The RFB Protocol. Technical report, RealVNC Ltd,
2007. "

6

How VNC Works

  It runs at the application layer and reads updates from
the framebuffer.

VNC server

application

VNC
client

frame
buffer requests

updates

internet

7

Defining Performance

client server
request

client server

update
client server

client server

2. Client waits

3. Server sends update 4. Client processes update

1. Client requests new update

8

  Introduction
  Adding a Message Accelerator

  VNC with High Network Latency
  The Message Accelerator and VNC
  Pipelining Updates
  Message Accelerator with High Network Latency

  Experimental Design & Results
  Conclusion

9

VNC with High Network Latency

  Client sends request - 200 ms
  Server sends update - 200 ms

Update Rate = 2.5 updates/second
More Generally, Update Rate = 1/RTT

server client
200 ms

10

Two Approaches
  Adding a proxy, unmodified client and server
  Modify the client

11

The Message Accelerator and VNC

  The Message Accelerator sends requests to the server at the
rate the client is processing them, and quickly receives updates
from the server.

  This lets the Message Accelerator adjust for latency between
the client and server

VNC
server VNC

client

requests

updates

internet

Message
Accelerator slow fast

 requests

updates

12

Pipelining Updates

  The proxy sends requests to the client at the rate the client is
processing, without waiting for a request.

VNC
server VNC

client

requests

updates

internet

Message
Accelerator slow fast

 requests

updates

13

Message Accelerator - High Network
Latency

  Client reads pipelined update from proxy - 75 ms

Update Rate = 13 updates/sec

server
client

Message
Accelerator

200 ms

update every 75 ms

14

  Introduction
  Adding a Message Accelerator
  Experimental Design & Results
  Conclusion

15

Experimental Design

  We use NetEm to add network delays to both client
and server to simulate network latency

n
e
t
e
m VNC

server

video
application VNC

client

n
e
t
e
m Mess

Acc

16

Results: Message Accelerator
Outperforms Unmodified System

17

Modify the Client

18

Conclusion

  We can improve VNC performance by having a
Message Accelerator mediate the update rate over
network latency.

  By using the Message Accelerator, we do not have to
modify an existing code, avoiding issues of parallel
code maintenance and source code availability.

19

