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The Problem with Supporting Video 
  Video is hard for Thin Client Systems 

  Frequent updates 
  Many pixel changes per update 
  All server generated 
  Becomes drastically worse over high latency 
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Server Push 

   X-Windows is a server push system 

Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans. 
Graph., 5(2):79-109, 1986. 

client server 
update 

Server Push 

4 



Client-Pull 

  VNC is a client-pull system. 

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper. 
Virtual network computing. Internet Computing, 2(1):33-38, 1998."
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Virtual Network Computing 
   VNC is a widely-used thin client system. 
  It is cross-platform and has several available open-

source implementations. 
  It was developed by Tristan Richardson at the Olivetti 

Research Lab. 

T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper. Virtual 
network computing. Internet Computing, 2(1):33-38, 1998. "

Tristan Richardson. The RFB Protocol. Technical report, RealVNC Ltd, 
2007. "
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How VNC Works 

  It runs at the application layer and reads updates from 
the framebuffer. 
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Defining Performance 
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2.  Client waits 

3. Server sends update 4. Client processes update 

1. Client requests new update 
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VNC with High Network Latency 

  Client sends request - 200 ms 
  Server sends update - 200 ms  

Update Rate = 2.5 updates/second 
More Generally, Update Rate = 1/RTT 

server client 
200 ms 
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Two Approaches 
  Adding a proxy, unmodified client and server 
  Modify the client 
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The Message Accelerator and VNC 

  The Message Accelerator sends requests to the server at the 
rate the client is processing them, and quickly receives updates 
from the server. 

  This lets the Message Accelerator adjust for latency between 
the client and server 
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Pipelining Updates 

  The proxy sends requests to the client at the rate the client is 
processing, without waiting for a request. 
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Message Accelerator - High Network 
Latency 

  Client reads pipelined update from proxy - 75 ms 

Update Rate = 13 updates/sec 
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Experimental Design 

  We use NetEm to add network delays to both client 
and server to simulate network latency 
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Results: Message Accelerator 
Outperforms Unmodified System 
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Modify the Client 
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Conclusion 

  We can improve VNC performance by having a 
Message Accelerator mediate the update rate over 
network latency. 

  By using the Message Accelerator, we do not have to 
modify an existing code, avoiding issues of parallel 
code maintenance and source code availability. 
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