
The Proximal Workspace Architecture for Wearable
I/O-Device Cloud Applications

Cynthia Taylor
Computer Science

Oberlin College
Oberlin, OH

ctaylor@oberlin.edu

Joseph Pasquale
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
pasquale@cs.ucsd.edu

ABSTRACT
We describe a new enhanced cloud computing architecture,
called the Proximal Workspace, to allow access and inter-
action between lightweight wearable I/O devices, e.g., video
glasses, earphones, wrist displays, body sensors, etc., and
ubiquitous applications that represent a new generation of
computation-and-data-intensive programs. While wearable
devices offer an easy way for these applications to collect
user data and offer feedback, the applications cannot be run
natively and completely on these devices because of high
resource demands. Making these applications available via
a cloud, while promoting ubiquitous access and providing
the necessary resources to execute the applications, induces
large delays due to network latency.

The Proximal Workspace provides nearby computing power
to the user’s devices and thus mediates between them and
the cloud’s computing resources. The workspace is designed
to run any subset of activities that cannot be run on a user’s
device due to computation speed or storage size, and cannot
be run on a cloud server due to network latency. We also de-
scribe a powerful abstraction for networked communication,
called Networked Device Drivers, which provide the under-
lying communication support for Proximal Workspaces in a
way that promotes simplicity and transparency.

1. INTRODUCTION
Promoters of ubiquitous computing have long dreamed of

a time where computer applications will fade into the back-
ground, and users will no longer sit at desktops, or painstak-
ingly navigate clunky screens on bulky portable devices. In-
stead, collections of sensors will unobtrusively collect infor-
mation on the user and their surroundings, and applications
will process these inputs and modify the users’ surroundings
based on their learned preferences [19]. Today we have ac-
cess to lightweight wearable devices, an unprecedented num-
ber of sensors, and machine learning applications which are
capable of developing and adapting complex models of be-
havior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: The workspace stores data that is too large
to hold on the lightweight wearable I/O device.

To begin to realize this vision of ubiquity, we need ap-
plications to take full advantage of the new data sources
these sensors offer, requiring intensive data processing and
machine learning that cannot run natively on low-powered
wearable devices. The traditional response to this has been
to move the required computation from the local device into
a server farm somewhere (i.e., “the cloud”). However, this
approach can suffer from network latency, which can intro-
duce unwanted (and intrusive to users) delays in response
time. In this work, we address this problem by introducing
the concept of a Proximal Workspace (or simply“workspace”
for the remainder of the paper), a low-latency intermediary
between the client and server.

In this paper, we consider the following computing envi-
ronment: A user has some collection of input/output de-
vices. An application receives input from these devices, and
uses this to construct a model of what the user is doing and
what their surroundings are like. It then sends appropri-
ate feedback to the user’s devices, and other devices in the
user’s immediate surroundings. This model is inspired by
the idea of wearable space, which is described by Samdanis et
al as “a ubiquitous technologies environment which through
wearable and spatially embedded interfaces links the human
body to architectural spaces” [9]. This wearable space incor-
porates I/O devices both worn by the user and embedded
in their surroundings to create a ubiquitous environment, in
which information about the user is constantly being gath-
ered and combined with previous information about their
preferences to alter their immediate surroundings.

We see the wearable space concept as presenting a new
model for how data is sent between a client and server, and
investigate the challenges presented by this new model. In

1



the traditional client-server model, the client will usually re-
quest a specific piece of data from the server (e.g. a webpage,
image, or multimedia file), and the server will send the client
that specific item. In this new model, the client will send
the server a collection of device updates that represented
the user’s current state, and then the server will send back
a large amount of information which will be interpreted and
displayed by the output devices both on and about the user.
The user can then interactively explore this data once it is
stored on the client, and the client will periodically send new
information about the user to the server.

Previously, the idea of sending surrounding data has been
used as an optimization for slow data transfers, i.e., pre-
fetching surrounding rows in a database. In the wearable
space model, we see two issues that make things different
and that present new challenges. The first is the nature of
the data: a typical ubiquitous application may send vast
amounts of very detailed multimedia data to the client. The
second is the nature of the user’s exploration: typically, a
user will explore the information in a non-linear fashion.
These two factors mean that the client has to deal with the
data it is receiving in a very different way than it did in the
past. The amount of data transferred requires significant
storage capacity on the device, and the exploration by the
user will create a significant amount of on-demand process-
ing.

Moving applications to a server within the cloud in a thin-
client fashion induces large delays due to network latency.
To solve this problem, we have designed a new system archi-
tecture whose key feature is the addition of a workspace as
a low-latency (relative to the client) intermediary between a
client and server(s). Figure 1 illustrates how the workspace
fits in to this new data model.

2. RELATED WORK
In this work we present a system to support applications

that combine both wearable and embedded I/O. Related to
this, Samdanis et al introduce the idea of wearable space,
a combination of wearable and spatially embedded I/O de-
vices that create a ubiquitous computing environment [9,
8]. Wearable space builds on both work in both wearable
computing, and in interactive architecture. The architec-
turally embedded devices can be as simple as speakers and
video displays, or as complex as the digitally moveable walls
proposed in Synthetic Space [12].

To support these systems, we propose the workspace ar-
chitecture, in which low-powered wearable and embedded
devices use a proximal servers to offload computation. There
are a number of systems that incorporate the idea of using
physically local resources for computation, although none of
them focus on interaction with I/O devices.

The Slingshot system [11] assumes a model where there
are computational resources available at WiFi hotspots. The
user runs a first-class replica of their computing session on
their home server, and second-class replicas are instantiated
on available servers near the client device. A client proxy is
responsible for locating local servers, deploying second-class
replicas, and coordinating their replies. Each replica runs in
its own virtual machine.

In their work on Cloudlets, Satyanarayanan et al also ar-
gue for a proximity-focused architecture. Their system ar-
chitecture approach is to use virtual machines to support
remote processing[10]. This builds on Internet Suspend/Re-

Figure 2: The system introduces a workspace be-
tween the client and servers.

sume system [6], which combines virtual machines and dis-
tributed file systems with the goal of “mobile computing
that mimics the opening and closing of a laptop, but avoids
physical transport of hardware.” It uses a Virtual Machine
Manager to suspend the virtual machine in which processes
are running, and save the state to disk. It then uses a dis-
tributed file system as a transport mechanism to move the
files containing the state from one machine to another.

In Mobidesk [4], network and operating system virtual-
ization is added to a thin client to create a system where
user sessions can be transparently moved between servers.
Mobidesk uses THINC [3] for its display virtualization, and
builds on Zap [7] for its operating system virtualization, with
each session being created inside a pod. It is designed as a
proxy-based server cluster system, with the client located
anywhere outside the proxy, and the proxy providing all ac-
cess to a network of servers on which sessions run.

3. ARCHITECTURE
The Proximal Workspace Architecture, the original ver-

sion of which we described in [14], is comprised of three
parts, illustrated in Figure 2: (1) terminals, the (wearable)
sensors and devices that the user actually interacts with and
that provide data about the users location; (2) the world,
consisting of the user’s home and/or work computers, web
servers, game servers, and anything else the user interacts
with through the internet; and (3) the workspace, a tempo-
rary computing session running on computational resources
very close to the terminals, capable of extending functional-
ity of both terminals and the world. We now describe these
classes of components in more detail.

Terminals consist of I/O devices worn or carried by the
user, as well as sensors in the room surrounding the user.
They are used for input and output. Input can be spe-
cific user actions, equivalent to mouse movements and key
presses, or it can be information from sensors such as video
cameras, accelerometers, GPS units, thermometers, etc. The
terminals may include a hub for local communication and co-
ordination. A set of terminals could consist of a smartphone
with an integrated GPS and camera, with a wall display in
the room the user is in. Terminals form a component similar
to the client in traditional thin client systems. Terminals are

2



not required to be capable of anything more than capturing
input, displaying output and communicating with the rest of
the system. Terminals attached to the user can be thought
of as permanent terminals that will persist throughout a ses-
sion. Terminals attached to the room are considered tem-
porary terminals which may not persist through an entire
session.

The “world” is the set of servers that communicate with
the rest of the system through the internet. These can in-
clude a reference website the user is visiting for the first time,
or a system server with which they are in semi-constant con-
tact. All persistent state is stored within the world. We
make no assumptions about the latency between the ter-
minals and any given server within the world. Some parts
of the world may be provided by others and contain large
numbers of factors we cannot control. How the world in-
teracts with the rest of the system can have a large impact
on system performance and user experience. How long a
part of the world remains in the system can very from sec-
onds to decades, and parts can remain consist over different
workspace sessions.

We define the workspace more precisely as a set of re-
sources, both hardware and software, provided to the user
by the workspace server, a machine very close to the user
in the network designed to provide systems with these re-
sources. The workspace is used to aid in applications that
depend on the users locality, and applications that must
quickly communicate with the terminals. In terms of hard-
ware resources, the workspace provides local power for com-
puting, memory, and storage, creating the illusion that the
terminals have much more power than they do in actuality.
It is aware of its physical location and may be optimized for
tasks that are frequently performed at its location. A set of
terminals interacts with only one workspace at a time, but
may include several different workspace sessions over a given
time period.

As for software resources, the workspace provides a set
of middleware utilties in the form of helper applications,
generally designed to do tasks that benefit from low la-
tency but are too computationaly intensive to run on the
terminals. Examples of these sorts of tasks include render-
ing, caching data, and prefetching data. These applications
may be legacy applications, such as VNC, or new applica-
tions created just for these tasks. These helper applications
may be dynamically uploaded (not arbitrary code, but code
that has been verified, from a trusted repositary) to the
workspace, where they are then executed and cached for fu-
ture use.

The workspace can cache information that relates to its
physical location, e.g., map data, location dependent game
elements, etc, and either forward it to the client or access it
with internal utilities, creating performance improvements
based on its constant geographic location. Additionally, as
the user travels and changes workspace servers, the set of
temporary terminals will also change. The workspace un-
derstands its set of temporary terminals and their abilities,
and has the ability to change which set of terminals it is
sending information to, so it can send video output to a
wall-mounted monitor when the user is in proximity, or to
the user’s phone display while the user is mobile.

During times when the user is away from a location with
a workspace infrastructure, the workspace may run on a
device like a phone, resulting in lower performance, but still

enabling the user to send information about themselves to
the world, and receive updates from the world. During these
times, more computation may be offloaded to the world.
When the user returns to a location with available workspace
servers, the workspace can migrate back to a more powerful
server, enable faster and richer processing.

The ability for the workspace to remotely communicate
with the terminals is provided by the Networked Device
Driver architecture, described below. Specific modifications
of the NDD architecture to allow it to support the workspace
system are described in section 4.9.

4. NETWORKED DEVICE DRIVERS
A key middleware/operating system level mechanism to

support the proximal workspace architecture is the networked
device driver, in which a device driver is split into two halves,
one half running on the client with the device, and the other
half on the workspace server. Network communications oc-
curs between the two halves, transparent to both the device
and application. Each side can be enhanced by transforma-
tion modules, which modify the I/O stream.

4.1 Architecture
At its most basic level, the system architecture must sup-

port the passing of updates between a device and an ap-
plication, each on a different machine, communicating over
the network. To preserve transparency, we encapsulate all
network and network-related operations within a networked
device driver, as show in Fig. 3. Updates are created at ei-
ther the device or application, passed through one half of the
networked device driver, transformed in some manner and
sent over the network. On the other machine, they are read
from the network, the transformation may be reversed, and
they are passed on to their destination (either application
or device).

The system consists of four types of modules. The applica-
tion communication module is responsible for passing data
between the application and the networked device driver.
Similarly, the device communication module passing data
between the device and the networked device driver. Net-
work modules send and receive updates over the network.
Lastly, optional transformation modules modify updates as
they are sent through the system, making changes to them
to compensate for the effects of the network.

4.2 Data Streams
We refer to the main flow of communication in a net-

worked device driver as a data stream. The data stream
consists of messages that travel between the device and ap-
plication, as illustrated in Fig. 3. They travel in only one
direction, being sourced at one end, and sinked at the other
end. Updates are created by the device or application, and
retrieved by the communication module. They are then
passed through any transformation modules on the source
machine, with each transformation module modifying the
update in some way. The network module on the source
machine then sends the updates over the network to the
network module on the sink machine. They are then passed
to any corresponding transformation modules, where each
module has the opportunity to possibly reverse the modi-
fication applied by its matching transformation module on
the source machine. The updates are then sent to the com-
munication module, which feeds them to the sink.

3



server client 

network device driver 

device 

device 
driver 

device 
module network 

module 
network 
module 

network 
card 

network 
card 

application 
module 

application 

network 

network device driver 

Figure 3: This data stream is sourced at the device and sinked at the application.

The system allows messages to be modified/repackaged
in order for them to be effectively sent over the network,
but still returned to their original form to be passed to the
sink by its communication module in a network-transparent
fashion. Each networked device driver has at least one data
stream. In most cases, the networked device driver will have
two data streams, once sourced at the application and sinked
at the device, and one sourced at the device and sinked at
the application. Having application-to-device and device-to-
application data streams handled separately and in a pos-
sibly asymmetric fashion allows the system to handle each
data stream in a way that best fits its unique data profile.
We next discuss how the various modules operate on a data
stream in more detail.

4.3 Device Communication Module
The function of the device communication module is to

receive information from the raw driver, i.e., the original,
unmodified device driver supplied by the device manufactur-
ers. To get the information from the raw driver, the device
communication module interacts with the driver through its
API, just as any other application would. Since it uses an
API specific to the device, the device communication mod-
ule must be custom-written for each device. It may wait
for events raised by the device or poll, depending on how
a particular API works. The device communication module
operates at the user level. After the device communication
module has received information from the raw driver, it for-
wards it to the first of the transformation modules or to the
network module. Since we discuss transformation modules
in a separate section, we next describe the network modules.

4.4 Network Modules
The network modules are a pair of modules, one on each

side of the network. The role of the network module is to
send data over the network: any higher level functionality,
such as buffering or ordering of updates, is left to the trans-
formation modules. The only additional work the network
module does is to send an entire update to the transfor-
mation modules, even if it takes multiple reads from the
network, rather than sending partial updates as it receives
them.

The network modules are generic, can be used with any
device, and are parameterized so that an appropriate stan-
dard network protocol can be used. For example, TCP may
be appropriate for non real-time applications reading from

video devices, where large updates may be split up into mul-
tiple packets, and it is important to receive packets in order.
For devices that send smaller updates, where updates are al-
ready timestamped or ordering does not matter, UDP may
be a natural fit. Modules for new or experimental network
protocols may also be created.

4.5 Application Communication Module
The last transformation module passes the update to the

application communication module, which communicates with
the application using the raw driver interface. Since the ap-
plication communication module is based on the raw driver
for the device, it must be custom-written for the device.
If the raw driver is purely a kernel driver, the application
communication module will consist of both a user-level com-
ponent and a kernel-level component. The kernel-level com-
ponent is necessary for the application to be read from the
device without modification, and so we include it to support
transparency. For devices with user-level drivers, the user-
level component of the driver may simply be rewritten to
accept input from a pipe, rather than from the raw driver.

4.6 Transformation Modules
The data stream passes through a series of optional trans-

formation modules before it reaches its destination. These
modules are designed to give the system the ability to add
extra functionality, without losing the advantages of trans-
parency. Each module is designed to perform a specific task,
whether it is averaging messages from the device, encrypting
or decrypting, or doing more complex video processing such
as face finding. Modules may not require specific knowl-
edge of the message content or format, and thus are able to
process any update, or, if they depend on knowing particu-
lar attributes of the message format, must be written for a
single device.

4.6.1 Transformation Module Pairs
To preserve transparency, any change made to the format

of the message must later be “undone.” If the data stream
is encrypted on the client side, it must be decrypted on the
server side before it reaches the application. Operations
must be undone in reverse of how they were performed: if
encryption is done before compression, then decompression
must be done before decryption. To preserve such ordering,
transformation modules act in pairs, with one half of the
pair performing an action on the client, and the other half

4



server client 

device 

device 
module 

Trans A Trans A’ 

network 
module 

network 
module 

network 
card 

kernel 

network 
card 

device 
driver 

device 
driver 

device 
driver 

application 
driver 

application 
module 

application 

network 

Figure 4: Only the application driver and raw driver run within the kernel.

reversing it in the server. These pairs are arranged in a
nested fashion, so their order on the server is the reverse
of their order on the client. Some transformation modules
(e.g., averaging) change the content of the message, rather
than its form, and thus may have no natural reverse of their
action. Each such module is paired with a “no-op” module.

4.6.2 Functionality
The type of additional functionality required will vary for

each application. A list of possible functions that illustrate
the potential uses for the system include:

• Averaging

• Buffering

• Bundling

• Compressing

• Discarding Non-Recent Updates

• Encrypting

• Pre-Fetching

• Synchronizing Multiple Data Streams

Different functionality will require different levels of cus-
tomization for the device. A function such as averaging will
require knowledge of the exact message format, especially
for a message which may contain multiple parts, e.g. an
X coordinate, a Y coordinate and a timestamp. However,
functions similar to compression will be completely agnostic
about the format of the data they are acting on, and can
be used for all devices. Finally, in addition to compensat-
ing for the network, some applications may wish to extend
their functionality by performing modifications to the I/O
stream.

4.6.3 Out-of-Band Messages
All transformation modules also support out-of-band mes-

saging, i.e., using a separate communication channel than
the one carrying the data stream. Out-of-band messages
contain meta information about how the modules should
process the messages being sent through their stream. For
example, when a buffer transformation module on the server
is running low on buffered updates, it will send a request for
new updates to the buffer module on the client. This is

required to enable transformation modules to respond as a
pair across the network, especially when reacting to changes
in network or other conditions.

4.7 Implementation
One of our design goals is to make it easy to customize

networked device drivers, or create new ones. We implement
at the user-level whenever possible, as this avoids the dan-
gers of running arbitrary code in the kernel, both in terms of
processes creating system failures on errors, and processes
being able to maliciously effect the system. Running at the
user-level also allows us to leverage existing mechanisms. We
use separate processes for each module, which allows us to
use the kernel’s existing scheduling mechanisms, rather than
having to create our own scheduler, and allows processes to
naturally block when there is no more data for them to pro-
cess. All device communication modules, network modules,
and transformation modules run on the user-level.

We only depart from the user-level when necessary to pre-
serve transparency. Within the application communication
module, we sometimes use kernel modules to create the de-
vice driver interface that the application is familiar with, as
illustrated in Figure 4. Adding this kernel module at the
very end allows us to preserve transparency, while still giv-
ing us all the advantages of running at the user-level for the
rest of the system.

We aim for this system to be as extensible as possible, so
device makers, application creators and users can all extend
it as they see fit. To add support for a new device, a de-
signer must provide a raw driver, a device communication
module using the API for that driver, and an application
communication module. These three components will allow
the device to work with all of the pre-existing functionality
provided by the transformation modules.

We have implemented Network Device drivers for the mouse,
keyboard, and video card, as well as for the Space Navi-
gator, a 3D mouse device which produces updates with 3
translation values and 3 rotation values [1]. We have also
implemented network modules for TCP/IP.

4.8 Basic Performance of NDD
As a basic measure of performance focusing solely on Net-

worked Device Drivers (experimental results in an environ-
ment using the Proximal Workspace are presented in Section
5), we determined how long it takes a message (of various
sizes) to travel along the data stream from the source to the

5



Table 1: The average time to for a message, con-
sisting of a random character array, to traverse the
system, in microseconds.

bytes 1000 5000 10000 100000 1024000
usec 632 819 1287 10320 91988

sink, using the most basic of network device drivers. This
tells us how much latency our system is adding to the de-
vice, and helps determine how much overhead the system
incurs. We used a Dell Optiplex 755 with an Intel Core 2
Duo chip and a 333 MHz FSB clock, and a Dell Optiplex 320
with an Intel Celeron Chip and a 133 MHz FSB clock. Both
machines were running Ubuntu Linux, and had wired con-
nections to a relatively fast campus network, with a sample
ping round-trip time of 0.235 msec.

We created a basic network device driver, consisting of a
device communication module, two network modules, one
on each side of the network, and an application module. We
created a synthetic device module which produces a ran-
dom character array in a specified size every two seconds.
Using this setup, we measured the end-to-end time for a va-
riety of message sizes. The device module paused for two
seconds between sending messages to avoid any bandwidth
issues from sending multiple messages at a time. When the
character array was created, it was time stamped. After
it had reached the application communication module, an-
other time stamp was taken, and the first time stamp was
subtracted from the second to determine the travel time of
the message. All measurements are averaged over 450 tests,
as this gave us sufficient data points while also allowing the
tests to complete in a reasonable time.

As shown in Table 1, the results show that the system
incurs a relatively small amount of overhead, especially for
smaller message sizes. For example, the default rate for
polling a USB mouse in both Windows Vista and Ubuntu
Linux is 125 Hz, or every 8000 usec. At the base rate of 632
usec for a 1000 character array (much larger than the data
from a mouse), adding a network device driver would not
add a significant delay to a USB mouse.

For more on the Networked Device Driver architecture,
including more extensive performance results, see [17, 15,
16].

4.9 Applying NDD to Wearables
In an effort to apply and extend the existing NDD ar-

chitecture to provide more support for both wearables and
wearable spaces in general, and the workspace system, we
present the following extensions.

4.9.1 Supporting Changing Terminals
As a user changes locations, their collection of tempo-

rary terminals may change. To support this, the workspace
can check what terminals are available to it at the start
of a workspace session, and reconnect to the appropriate
set of terminals, using permanent terminals if the appropri-
ate temporary terminal is no longer available. To support
this, each workspace server will have a standard classifica-
tion for each of its temporary terminals, such as “video out-
put”, “sound input”, etc.

4.9.2 Translating Updates For New Devices
Wearable devices afford us the opportunity to work with

a radically different set of input and output devices than
are traditionally used in the desktop. When working with
these new devices and legacy applications, the NDD sys-
tem must translate messages from these new devices into
the more traditional forms that desktop applications were
designed to use. In some cases, this may be relatively sim-
ple, such as dealing with a smaller screen by either scaling
down the original image, or only showing a portion of the
screen. However, there may also be more complex transfor-
mations, for example translating an audio signal to a haptic
signal, in a manner similar to setting one’s cellphone to vi-
brate. With additional transformation modules designed for
this sort of translation, this kind of adapting and translat-
ing signals from new devices to applications not designed
to work with them would be easy to accomplish within the
NDD framework.

4.9.3 Embedded Devices
Consider a simple device consisting of some collection of

devices which communicate with the user (screens, micro-
phones, LEDs, GPS, vibration unit, accelerometer, etc), a
microcontroller, and some device which communicates with
a local network (wifi, bluetooth, etc). Such a device could
be extremely small and lightweight, but would be able to do
very little actual computation on the device. By running a
Networked Device Driver on such a device, we could move
all computation from the device itself to the local workspace
and remote servers, as well as giving it the ability to work
with legacy applications.

With this in mind, we plan to port a simplified version of
the NDD architecture to the Arduino microcontroller plat-
form [2]. Since running on a microcontroller will not allow
us to easily use multiple processes, this will likely involve
developing a compiler to create a single process version of a
network device driver using arbitrary transformation mod-
ules.

5. EXPERIMENTAL RESULTS: GOOGLE
EARTH/ANCIENT ROME 3D

An important goal is to have utilities that work in con-
junction with unmodified applications, rather than rewriting
applications to work within our system architecture. Build-
ing things to work with unmodified applications offers many
advantages to developers and users, including ease of in-
stallation and avoiding parallel code maintenance. We have
taken various approaches to making our system work with
unmodified applications, including virtualization-based ap-
proaches such as remote display applications and running
applications in virtual machines, and intercepting messages
sent between client and server applications. An example of
the second approach can be seen in our previous work, Im-
proving VNC Performance, in which we add a Message Ac-
celerator which sits between the VNC client and server [13].
No modifications were required to either than client or server
to add the Message Accelerator the client behaves as though
the Accelerator were the server, and the server behaves as if
it were the client.

To demonstrate the usefulness of the workspace archi-
tecture, supported by networked device drivers, we have
adapted Google Earth Ancient Rome 3D with the goal of the

6



Figure 5: Google Earth Ancient Rome 3D adapted
for the Proximal Workspace Architecture

user being able to intuitively navigate through renderings of
Ancient Rome in video glasses, without being hampered by
any bulky equipment. Google Earth is a perfect example of
an application which fits our new data model. The user in-
teractively explores a rendering of ancient Rome, either with
a keyboard and mouse or with a more sophisticated input
device, and while they explore the Google Server periodically
sends a very large amount of multimedia data describing the
area they are exploring to the client, which then renders it
on a frame-by-frame basis. This puts two burdens on the
client: it must be able to store the vast amounts of data
being sent, and it must be able to quickly render a complex
scene. Google’s suggested minimum specs for computers to
be able to display Ancient Rome 3d include 512 MB RAM,
2 GB of free disk space, Network speed of 768 Kbits/sec or
better, and a 3D-capable video card with 32 MB of VRAM
or greater. This is beyond the capabilities of a lightweight
wearable I/O“glasses”device, but by adapting Google Earth
Ancient Rome 3D to our system model, we can allow a user
to use it on such a device.

In adapting Ancient Rome 3D to the workspaces archi-
tecture, we considered both where parts of the application
should be distributed, and what utilities must be created
to aid the distribution. The hardware for our test system
consists of a Dell Optiplex 755 with a Radeon X1300 video
card with 256MB of RAM running Windows XP as the
workspace server, with a Lenovo Ideapad S10e Netbook run-
ning Ubuntu connected to a 3d Connexion Space Navigator
and Video Glasses as the terminals. The Space Navigator is
a joystick-like device that records both rotation and pressure
around the x, y and z axes [1]. Since the Google Earth ap-
plication cannot meet real time performance demands while
running on the netbook, we moved it to the workspace. Once
Google Earth is running on the workspace, we must create
utilities to forward input from the netbook to Google Earth,
and forward the display updates from the workspace server
to a netbook. This is illustrated in Figure 5. To forward the
display, we use TightVNC [18]. To forward input from the
Space Navigator, we run a program on the netbook which
forwards the raw input from the Space Navigator to the
workspace server, where it is then aggregated, translated
into units appropriate for Google Earth, and sent to the
Google Earth application via API calls.

For our initial results, we measured the frame rate of
Google Earth Ancient Rome 3D running natively on the
Lenovo ideapad using the Fraps video benchmarking tool [5].
Running natively, Google Earth displayed 0.16 frames per
second, resulting in a virtually unusable application. We
then ran the adapted Google Earth Ancient Rome 3D on

our system, with a link between the server and netbook
that had an average round trip time of 0.42 ms, measur-
ing our frame rate by using an instrumented version of Thin
VNC. Our version achieved an average frame rate of 7.08
frames per second, resulting in an easily usable application
and pleasant user experience.

By adapting Google Earth Ancient Rome to the Proxi-
mal Workspace architecture, we allow users to use the ap-
plication on a lightweight netbook, something that it would
be impossible to do running the application natively. Be-
cause of the low latency connection between the workspace
server and the terminals, the performance of the application
is quite good, with no lag between the display of frames.
To the user, the effect is as though they were running the
application on a much more powerful system, but without
being tethered to a desktop machine.

6. CONCLUSIONS
We have presented the Proximal Workspace Architecture

to support wearable spaces. Along with the Networked De-
vice Driver, this architecture supports ubiquitous applica-
tions that communicate through light-weight wearable and
embedded devices, and are highly computationally intensive.
As these applications are highly interactive, it is imperative
that they still execute “near” the user. Consequently, a dy-
namically allocated workspace that provides computational
and memory resources, that is proximal to the user, and
that supports communication with arbitrary I/O devices is
the novelty of our design.

In addition to building individual utilities for this archi-
tecture, our current work is to also explore how to best de-
sign the system as a whole. Moving computation from the
client to the workspace adds new issues that must be solved.
For example, the workspace must be able to correctly save
persistent data at the end of a session with the client, which
means it must have a mechanism for figuring out which data
should be saved, and which server in the world to save it to.
There must be a mechanism for the client to discover and
be assigned to a workspace server which is capable of han-
dling its applications. Multiple client sessions within the
same workspace machine raises issues of security, privacy,
and QoS scheduling.

Based on our existing work with Google Earth, the Prox-
imal Workspace system architecture offers unique perfor-
mance advantages for ubiquitous applications and systems,
especially those that use the cloud. By adding a workspace,
systems can allow users to carry only lightweight wearable
equipment, but avoid the costly performance lag of using
a pure thin client system with the cloud. In addition, the
location-based nature of the workspace system is an ideal
match for wearable spaces applications, allowing workspaces
to cache information about their own locations and serve it
quickly to visiting or embedded terminals.

7. REFERENCES
[1] 3d Connexion Space Navigator.

http://www.3dconnexion.com/.

[2] The arduino open source hardware platform.
http://arduino.cc/.

[3] R. A. Baratto, J. Nieh, and L. Kim. THINC: A
Remote Display Architecture for Thin-Client
Computing. Computing Science Technical Report

7



CUCS-027-04, Department of Computer Science,
Columbia University, 2004.

[4] R. A. Baratto, S. Potter, G. Su, and J. Nieh.
Mobidesk: mobile virtual desktop computing. In
MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and
networking, pages 1–15, New York, NY, USA, 2004.
ACM Press.

[5] Fraps. http://www.fraps.com/.

[6] M. Kozuch and M. Satyanarayanan. Internet
suspend/resume. In Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems and
Applications, 2002.

[7] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of zap: A system for
migrating computing environments. In Proc. 5th
USENIX Symposium on Operating Systems Design
and Implementation, pages 361–376, 2002.

[8] M. Samdanis, Y. Kim, and S. H. Lee. Remediation of
the wearable space at the intersection of wearable
technologies and interactive architecture. In
Proceedings of the Alt-HCI Conference, pages 1–6,
2012.

[9] M. Samdanis, Y. Kim, and S. H. Lee. The emergence
of wearable space: A review and research implications.
In CHI extended abstracts on Human factors in
computing systems, 2013.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The Case for VM-based Cloudlets in
Mobile Computing. IEEE Pervasive Computing,
8(4):14–23, 2009.

[11] Y.-Y. Su and J. Flinn. Slingshot: deploying stateful
services in wireless hotspots. In MobiSys ’05:
Proceedings of the 3rd international conference on
Mobile systems, applications, and services, pages
79–92, New York, NY, USA, 2005. ACM.

[12] Y. Takeuchi. Synthetic space: inhabiting binaries. In
CHI’12 Extended Abstracts on Human Factors in
Computing Systems, pages 251–260. ACM, 2012.

[13] C. Taylor and J. Pasquale. Improving video
performance in vnc under high latency conditions. In
Collaborative Technologies and Systems (CTS), 2010
International Symposium on, pages 26–35. IEEE, 2010.

[14] C. Taylor and J. Pasquale. Towards a proximal
resource-based architecture to support augmented
reality applications. In Virtual Reality Workshop
(CMCVR), 2010 Cloud-Mobile Convergence for, pages
5–9. IEEE, 2010.

[15] C. Taylor and J. Pasquale. Performance aspects of
data transfer in a new networked i/o architecture. In
Network Computing and Applications (NCA), 2012
11th IEEE International Symposium on, pages
155–158. IEEE, 2012.

[16] C. Taylor and J. Pasquale. A remote i/o solution for
the cloud. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 670–677.
IEEE, 2012.

[17] C. Taylor and J. Pasquale. A highly-extensible
architecture for networked i/o. In Computing,
Networking and Communications (ICNC), 2013
International Conference on, pages 867–871. IEEE,
2013.

[18] Tight VNC. http://www.tightvnc.com/.

[19] M. Weiser. The computer for the 21st century.
Scientific american, 265(3):94–104, 1991.

8


