
Leveraging Open Source Principles for
Flexible Concept Inventory Development

Leo Porter
Mathematics and Computer

Science Department
Skidmore College

Skidmore, NY
leo.porter@skidmore.edu

Cynthia Taylor
Computer Science

Department
Oberlin College

Oberlin, OH
ctaylor@oberlin.edu

Kevin C. Webb
Computer Science

Department
Swarthmore College

Swarthmore, PA
kwebb@cs.swarthmore.edu

ABSTRACT

Concept Inventory (CI) assessments, which target high-level learn-
ing goals, have proven highly valuable for higher education re-
search. These assessments have helped to evaluate pedagogical
practices among individual instructors, both within and across insti-
tutions, and have hence elevated the level of discourse on education
within the community. The success of CIs in physics has inspired
similar developments in computer science, with a few CIs now de-
veloped for computer science courses. However, the development
of a CI typically follows a burdensome process, requiring a sig-
nificant investment to produce a single CI that may be difficult to
deploy due to institutional curricular differences. Furthermore, as
our field continues to be shaped by technological advances, a path
to faster, more modular CI development is critical.
This paper proposes an alternative CI development model and

continues the discussion within the community about the need for,
and path to, concept inventories throughout the computer science
curriculum. Specifically, we explore the implications of an open
collaboration system for CI development that would mimic the
principles common to open source software communities, which
have regularly demonstrated their ability to produce high-quality
results.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Education]: Com-
puter Science Education

General Terms

Human Factors

Keywords

Concept Inventory, Assessment, Community Discussion

1. INTRODUCTION
In this paper, we propose an alternative process for the devel-

opment of Concept Inventories (CIs). A Concept Inventory is an

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ITICSE’14, June 21–26, 2014, Uppsala, Sweden.

Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.

http://dx.doi.org/10.1145/2591708.2591722.

assessment mechanism consisting of a series of forced-choice ques-
tions, given as both a pre- and post-test. Unlike traditional assess-
ment mechanisms such as final exams, CIs are designed to measure
the success of the course in raising the level of students’ conceptual
knowledge, rather than assessing individual students. By focus-
ing on the common concepts, CIs are applicable to similar courses
taught by different instructors or at different institutions.

CIs provide valuable insight into how students conceptualize
course content by focusing on student understanding of core con-
cepts, as opposed to relying on detailed calculations or rote mem-
orization. In recent years, concept inventories have gained traction
in the sciences as mechanisms for exposing student misconcep-
tions before and after instruction, contrasting instructor and student
views of classroom material, and measuring course effectiveness.

Moreover, as standard assessment tools, CIs enable comparison
of pedagogical techniques between courses, previous semesters, or
across multiple institutions. In physics, where CI adoption has been
most prominent, work with the Force Concept Inventory [18] led to
a dramatic revamping of the way introductory physics lectures are
taught, resulting in significant gains in student learning [10, 15].

Previously, the Delphi Process has been proposed as a rigorous
method for developing concept inventories [13] that aims for con-
sensus among a panel of fifteen to twenty subject-area experts. The
process requires panelists to identify key concepts, propose assess-
ment questions, and iterate though multiple rounds of refinement
in which questions are scored across several metrics. Experts in-
volved in the Delphi process are often compensated for their time,
which makes developing a concept inventory a difficult proposition
without significant financial support. The end result of this method
is a rigorously-evaluated concept inventory, and while we strongly
believe in the process’s efficacy, its overhead is relatively high. The
time and effort required to develop concept inventories in this man-
ner is daunting enough to effectively hamper the development of
new concept inventories, computer science topics included.

Additionally, CI development practices for other disciplines may
not properly address the needs of computer science. Unlike a
physics course on Newtonian mechanics where key topics are well
established, curricular differences between institutions commonly
lead to topics appearing in different courses (e.g., recursion may
appear early in a functional programming CS1 but might not ap-
pear until CS2 at institutions that teach CS1 using an iterative lan-
guage). As such, constructing a concept inventory as a collection of
independent, topic-based modules may be more appropriate than a
whole-course CI. Moreover, the content of courses may change as
our field advances and/or technology changes. For example, while
single-chip multiprocessors are a key topic in computer architec-
ture classes today, the topic would have scarcely been mentioned
ten years ago. As such curricular shifts occur, the field needs a
mechanism by which CIs can similarly adapt.

In this paper, we propose an alternative concept inventory devel-

opment process inspired by the open source software model. In re-
cent years, the open source community has demonstrated the effec-
tiveness of rapid project development by incorporating large groups
of contributors with varying levels of expertise [24, 27]. We believe
that by applying similar multi-author development models to the
construction of computer science concept inventories, the educa-
tional community will benefit from high-quality, modular concept
assessments with significantly increased course coverage.
With this paper, we aim to incite discussion surrounding concept

inventories in the computer science community and solicit involve-
ment from the community. We are not presenting results or arguing
that this is a solved problem with a single correct approach. Rather,
we examine the advantages of this approach, describe our goals and
expectations for the resulting concept inventories, and explore the
potential challenges (e.g., validation, and versioning) of the design
space.

2. MOTIVATION
Concept inventories have proven to be essential in measuring stu-

dent conceptual understanding in the physical sciences. In this sec-
tion, we advocate CI adoption in computer science and characterize
early efforts toward developing inventories for upper-division CS
courses.

2.1 Value of CIs
Many STEM fields have adopted concept inventories with posi-

tive results [18, 20]. Unfortunately, the adoption of CIs in computer
science, a field that has been defined by (and prides itself on) rapid
improvement, remains slow. While the currently developed CIs for
computer science are excellent [11, 28], they only cover a small
number of courses and, in some cases, have limited availability.
The lack of concept inventories plainly reduces the potential for

informed discussion in the computer science education community.
A significant percentage of work in our field reports solely on stu-
dent satisfaction. While satisfaction is a relevant and meaningful
metric, it has limited value when reported in isolation. Ultimately,
the most important metric for the success of a pedagogical practice
or educational tool is student learning.
Recognizing the value of reporting on student learning, some

work has succeeded in producing controlled studies across multi-
ple courses using similar or identical final exams as the metric of
student learning success. However, even this metric leaves room
for criticism as the quality and content of the final exam is often
unknown or focused on other aspects of the course (e.g., calcula-
tions rather than high-level concepts). As an established set of ed-
ucational benchmarks, concept inventories would elevate the level
of discourse considerably and enable stronger educational claims
by CS education researchers.

2.2 Related Work
Concept inventories are now widely used in a variety of disci-

plines [12] to assess the impact of pedagogical methods. In the
field of computer science, concept inventories have been created for
digital logic [16, 17] using the Delphi process, algorithms and data
structures [11], and introductory courses [13, 14, 19]. Although
these CIs are a good start, the majority of computer science top-
ics remain without concept inventories.
Other work in computer science education research has exam-

ined student learning using assessments not developed using a CI
development process (such as the Delphi process) [6, 8, 21–23, 25,
28–31]. These works have successfully underscored the need for
more established assessment mechanisms in computer science by
providing important intuition as to student understanding.
In both formal CIs and other assessment mechanisms, findings

often demonstrate that students understand far less than instruc-

Table 1: Post-test results from various concept assessments in
computer science. The only available data from an assessment
using the Delphi Process is [17].

Exam Content Correctness (avg.)

BASIC Programming (Table I in [6]) 31%
Number and Date Sorting [8] 59%
Code Comprehension/Tracing [21] 60%
Value and Reference Assignment [22] 63% and 17% (resp.)
Write Calculator Program [23] 21%
Fundamental Intro. Concepts [31] 42%
Digital Logic CI [17] 55%
CS1 Language Independent CI [30] 34%

tors expect [21, 23, 30, 31]. Table 1 provides results from the con-
cept assessments. These results serve to underscore the importance
of established assessment mechanisms, which facilitate meaningful
comparisons between curricular and pedagogical computer science
practices. Despite the Delphi process being a standard CI devel-
opment method, we note that (to the best of our knowledge) many
more of the non-Delphi-developed concept assessments were ad-
ministered in courses with published results than Delphi-developed
concept inventories. We argue that test availability should be a key
goal of concept inventory development.

2.3 Preliminary work
Absent vetted CIs in Operating Systems and Computer Architec-

ture, we have recently developed basic concept tests for these top-
ics [26, 32]. This work applies to the present discussion, as these
concept assessments were developed by just a few experienced in-
structors, who did not follow the Delphi Process, but nevertheless
offered insight into student understanding of course content.

The concept assessment in computer architecture was designed
by two experienced instructors who are published researchers in
computer architecture. We designed the questions with the in-
tent that every student successfully completing an architecture class
should be able to answer the question correctly. The CI was run in
four different courses by four different faculty at two different in-
stitutions under different conditions (as an online pre-test and as
an online post-test before the end of the term, in an in-class final
review session, and on the final exam). Although results on dif-
ferent questions varied somewhat by course, the CI revealed two
interesting findings. First, there were questions for which students
performance did not improve significantly from pre-test to post-
test. Additionally, across these different classes, institutions, and
instructors, students answered only 56% of questions correctly.

To see if such results are common in upper-division computing
courses, we have similarly developed a concept test for Operating
Systems following a similar methodology. Across three different
instructors and four different courses at two institutions, we have
found similar results to the architecture study. Students do not
demonstrate significant improvement between the pre- and post-
test for some questions, and on average, students answer 55% of
the questions correctly.

Despite these CIs not being developed using a standard CI devel-
opment process, we believe that the results are nonetheless hugely
informative for instructors. That students are misunderstanding
nearly half of the tested core concepts in upper-division classes is
worrisome. Under the status quo, their conceptual difficulty might
have gone unnoticed. With the introduction of a concept inven-
tory, instructors can repeatedly collect student performance data,
enabling them to more easily guide modifications to their courses

and/or pedagogical practices. This is the true value of such eval-
uation mechanisms: they provide instructors with a motivation to

improve and a means to measure improvement.

Undoubtedly, because these inventories were not rigorously vet-
ted, their results come with some caveats. Our experience in devel-
oping them informs our belief that the availability of a respectable
CI, even an imperfect one, strongly outweighs having no inventory
at all. We believe this presents an opportunity to employ the collec-
tive insight of our community. With open access and contributions
from community members, the quality of our inventory tools will
only get better. This motivates our analogy to open source soft-
ware, and in the remainder of this paper, we discuss the goals and
design challenges of our proposal.

3. GOALS
To guide the design of collaborative concept inventories, we turn

to the open source software community for inspiration. We aim to
formulate a development process for concept inventories that lever-
ages community involvement to quickly create and deploy a con-
cept inventory. Ideally, any interested instructor should be able to
use the test in their class and compare the results with results from
other classes. Additionally, instructors should be able to contribute
new questions and suggest modifications to existing ones based on
their experience with the concept inventory and their classes. In
this section, we describe our vision, goals, design requirements for
cooperative CI development.
The following objectives are critical to the construction of a com-

munity-driven concept inventory:

Customizable. As topics appear in different courses based on dif-
ferences in computer science program curricula, an assessment for
a course should be customizable to the content of that course. This
customizability may be at a module level (e.g., a module on sorting)
or at an individual question level (e.g., a question on inheritance).
At either level, assessment results will then need to be associated
with the context/course in which the assessment was given.

Collaborative. Much of the value of concept inventories comes
from their ability to enable comparisons across courses, instructors,
and institutions. However, to fully realize this potential, a CI needs
as many participants as possible. We believe that open instruc-
tor access to CI questions and response data, including instructors
who do not identify as CS education researchers, is paramount to
establishing the collaborative support environment around a CI.
Any interested instructor should be able to contribute to the de-

velopment of a concept inventory, by contributing new questions
or recommending changes to existing questions. Ultimately, as the
number of CI users and contributors increases, so does the quality
and availability of questions and response data, which enhances the
overall impact and utility to the CS community. Thus, it should be
straightforward for instructors to use a concept inventory in their
class, make their results available to other instructors, compare
their results with others, and contribute feedback, adjustments, or
new questions for future inclusion.

Adaptable. Unlike introductory Newtonian physics, which has
been relatively quiescent for decades, the technology-driven com-
puter science discipline has evolved rapidly in recent years. Such
an accelerated progression suggests that we need flexible assess-
ment tools. Thus, inventories should be developed as dynamic ex-
ams, with a clearly-defined procedure for making modifications in
response to deployment data or new technologies.

High-quality. A concept inventory requires high-quality questions
if instructors and education researchers are to draw reliable con-
clusions from the results. “Linus’s Law” [27], which states that
a large enough developer base will efficiently detect and correct

software bugs, is an essential underpinning of the open source soft-
ware world. The open source community has repeatedly demon-
strated the ability to produce high-quality software, and we believe
the same principles will serve the CI development process.

We propose leveraging the adaptable nature of community-
driven project development to iteratively reexamine and refine CI
questions. Thus, inventory development should converge on a set
of questions and presentation style that are clear, accessible to stu-
dents, and carefully crafted to elucidate concept comprehension.

Maintainable. Maintaining the quality of collaborative concept
inventories will require an organized management infrastructure.
Like open source software, the availability of simple tools to doc-
ument and support development will lower the barrier to entry for
new contributors and help to cultivate a CI’s community. Thus, an
inventory’s development process should clearly track question con-
tributions, collaborator discussions, alteration history, and recorded
response data with low administrative overhead.

4. DESIGN
Our proposal to accelerate the development process of computer

science concept inventories is not without obstacles, and in this sec-
tion, we examine the design space of our approach. Since this is
a discussion paper describing a space of potential choices (rather
than describing an existing solution), we opt to explore potential
options, rather than prescribe solutions. Ultimately, the goal is to
see a variety of CIs developed across many computer science sub-
ject areas, and we recognize that each may make different design
decisions.

4.1 Composition and versioning
The need for CIs to be developed openly and iteratively is critical

to our collaborative and adaptable design goals. To support these
goals in a realistic fashion, the community will require CI tracking
and revision history.

The first point of contention we envision with respect to inven-
tory composition is version control granularity:

Should a concept inventory be a loosely related set
of questions or a holistic exam?

One design option is to represent a concept inventory not as a
synoptic test, but as a collection of questions, some of which may
be available in multiple versions. Instructors may choose which
of the set of questions available for their class they will use in the
concept inventory they give, and which version of each question.

This model enables instructors to mix-and-match self-contained
questions that are independently versioned. By allowing instructors
to choose the questions that best fit their courses, this model helps
to address the diversity in course material coverage. The potential
trade-off is that collected responses would only be comparable per-
question, rather than representative of student performance across a
holistic CI. This complicates comparing results, as instructors who
wish to make direct comparisons would need to purposely select
the same set of questions.

On the other hand, a holistic approach simplifies data compari-
son but requires a stronger consensus from the community regard-
ing question inclusion and may reduce a CI’s dynamism. Continu-
ing our open source analogy, we believe that a holistic CI develop-
ment method might resemble the branched structure [9] common
to many software development projects. A CI developed in this
fashion might consist of core set of “stable” questions augmented
by “experimental” questions that help to inform future revisions.
Opting for a hybrid model, the experimental questions could be op-
tionally chosen by instructors to help tailor the CI to their course.

How do changes get integrated into a release of a
concept inventory?

The field of computer science is by nature constantly evolving,
and with it some of the core concepts in our courses may change
(e.g., energy consumption and related concepts have become a criti-
cal to systems design in the past decade). This necessitates concept
inventories that are capable of adapting to the current knowledge
in the subject area. The CI development process must balance the
trade-off between frequent updates, which complicates data com-
parisons, and remaining unchanged, which runs the risk of becom-
ing outdated.
This issue is particularly important for holistic CI development,

which requires a procedure for transitioning questions from “ex-
perimental” to “stable”. We envision a core group of test develop-
ers who curate the stable version and decide when to announce a
new release. As instructors use a CI and provide feedback on the
questions, the developers may utilize a mechanism to automatically
move questions into the stable group based on quantitative instruc-
tor evaluations. Alternatively, they might employ a scheduled re-
lease cycle for new stable versions, and at that point the top-rated
questions become the new stable test.

How are versions managed?

With the ability to update questions comes the need to reference
specific versions of a question. Version control is a common and
well-understood problem in our field, and numerous solutions, such
as CVS, Subversion and Git already exist [1, 3, 5]. However, all of
these systems specialize in maintaining code rather than text docu-
ments. One way to deal with this might be to simply split up each
question into a separate file for ease of editing.
There is also the need to keep results associated with a specific

version of the test or question. This necessitates a strong set of
version numbers that are easy to reference and associate with data.
Likewise, instructor feedback and discussions will also need to be
associated with specific versions.

4.2 Instructor Access

Who should be given access to read and write con-
cept inventory materials?

Central to the idea of an open source concept inventory is the
ability for any interested and experienced instructor to contribute to
it. However, by nature a concept inventory must be more restricted
than a typical open source project, as the questions cannot be pub-
licly available. This necessitates an approval process for access, at
the very least verifying that the requester is a course instructor or
researcher, and not a student attempting to locate test questions.1

There must be some way to verify that someone attempting to
gain access to a CI is actually an instructor. The standard practice
in the physics community involves password protected documents,
for which instructors acquire the password by sending an email to
the CI maintainers with their name, institution, and website. How-
ever, this requires instructors to be separately approved for each
individual concept inventory. An alternative system might make
use of a cryptographic key system, in which instructors could be
verified once, and then simply provide their key afterwards.
Once instructors are approved to access a CI, they might auto-

matically be approved to contribute, or there may be some further
application process. Depending on their frequency, contributions
may need to be voted on democratically or submitted to a group of
maintainers prior to inclusion in the public CI repository.

1Ideally, a CI should be used as an educational metric, and not for
credit, disincentivizing students from attempting to gain access.

4.3 Leadership and Quality

Who should have leadership roles in concept inven-
tory development, and what should these roles be?

We imagine most concept inventories will have some small
group of instructors who do most of the management of the con-
cept inventory, either because they are doing research involving the
concept inventory, or because it is for a class they frequently teach.
How much control this group has over the concept inventory will
naturally vary. One compromise between fully open source CI de-
velopment and the traditional Delphi process might be to carefully
select a group, consisting of both pedagogy researchers and experts
in a subject area, to maintain the concept inventory. This approach
could help to bootstrap new inventories during their initial devel-
opment.

How will test questions be validated?

Traditionally, CI questions have been validated by a number of
methods, including having students perform think-alouds in order
to check if questions are misleading or rely on concepts other than
what they are designed to measure, and comparing student perfor-
mance on CIs to performance on final exams. This validation is not
incompatible with open source CI design. Once questions are sub-
mitted, they can be validated via think-alouds or other methods, and
the results of that validation used to improve the questions. Con-
tributors can indicate if questions have been validated, and how. In-
structors can choose to use only validated questions, or to include
newer questions that have not yet been validated as well.

How can we assure a high-quality CI?

The rigorous structure of the Delphi process was developed
specifically to assure an accurate concept inventory that assesses
key concepts agreed upon by experts in the field. Without this struc-
ture, we run the risk of developing concept inventories that lead to
misleading results or focus on the wrong concepts. We believe that
despite this risk, quality concept inventories can be developed via
open source development methodologies. Open source software
projects have shown their ability to produce quality products, and
we believe that open source CI development will produce better
end results with more community member involvement. It is rea-
sonable to assume that those researchers and instructors who take a
leadership role in the development of concept inventories will work
to assure their quality. Ultimately, we believe that even imperfect
concept inventories will still provide some standard way to assess
student learning, something we currently lack in a large number of
computer science courses.

4.4 Response data
In addition to versioning and access control, a successful CI

repository will need to record metadata (e.g., usage frequency or
question development discussions) and student response statistics.
We believe that collected CI results should be made available, in an
anonymized form, for use by the broader computer science commu-
nity. For this design aspect, we hope to steer the discussion toward
several questions, the first of which is:

How much data should we collect, and what kinds?

The granularity at which we collect results is important, espe-
cially if instructors are including different questions within the ver-
sions of the CI that they administer. As instructors, we would like
to easily compare results across the test as a whole, individual ques-
tions, and individual versions of questions. One solution would be
for raw scores for each question to be collected each time a test was

given, and those scores associated with that version of the question.
Collecting results on the granularity of individual versions of ques-
tions will allow instructors to compile results for the questions as a
whole, and different versions of the test.
Tagging questions with metadata such as subject area could also

allow comparison across subjects. For example, an instructor may
wish to measure the correlation between results from a specific
question with others that assess a related concept. However, this
will require instructors to be willing to contribute their data in this
more detailed form. Additionally, more fine-grained data may be
more difficult to anonymize, especially if it is possible to track how
an individual did on each question, even if their name is removed.
This becomes especially of concern when results from small classes
are contributed.
Another tactic would be to only compare results from stable ver-

sions of the test, which would allow instructors to contribute their
results as a whole. However, this means that an instructor can no
longer compare across different test versions, and means that even
when the same individual question is in multiple stable versions
of the test with the same format and wording, we can no longer
compare results for that question across versions.
There is also the issue of collecting meta-data about the ques-

tions. Since the concept inventory is being continually developed,
feedback from instructors who have given the question to their
classes would be extremely valuable. This could take the form of a
simple "up vote/down vote," long form comments, and ideally the
distribution of how their class performed on the question. Ques-
tions for which answers vary wildly may indicate a poorly worded
or unclear question. This kind of empirical data can be collected
and analyzed in order to validate test questions.

How should response data be collected and
anonymized?

In the collection of response data, we need to anonymize data to
protect student privacy, but also make sure we retain enough data
to make the results as useful as possible. Information like the type
of institution where the concept inventory was given, the experi-
ence level of the instructor, and what pedagogical techniques were
used in the class will all make the data more useful for potential
comparisons.
One solution to streamline both data collection and anonymiza-

tion could be to administer the exam via the response data collec-
tion system. For example, an instructor could set up an account
with the system (at which point items like institutional character-
istics could be provided) and then request a web-link for their stu-
dents to take the exam. Students could then take the exam on-line
with results (potentially non-anonymized) sent to the instructor.
That data could then be automatically anonymized by the system
and incorporated into the collected data (with instructor permis-
sion).

Should we incentivize participation?

The more CI results aggregated for a subject area, the larger the
impact it will have on the CS community. To aid in data collec-
tion, it may be beneficial to incentivize instructors to share their
collected CI data. For example, a CI might only release questions
to instructors who will pledge to contribute their results or aid in
question development. Likewise, a CI may choose to only share
previously-recorded results with instructors who commit to mak-
ing their own results available. Whatever the model, it is important
that the barrier to entry is not so high as to dissuade instructors from
pursuing the concept inventory.

4.5 Pre- and Post-tests

How should a CI be administered?

Instructors traditionally administer concept inventories as a pre-
and post-course assessment. Pre-tests help pinpoint misconcep-
tions that may interfere with new student learning and identify ex-
isting knowledge that can be leveraged when explaining new sub-
ject material [7, 8, 19]. Comparisons between the pre- and post-test
enable instructors to assess student learning gains.

Unfortunately, for many upper-level computer science classes,
converting conceptual vocabulary into “plain English” that students
can understandable at the start of the course is often a daunting task.
While some concepts lend themselves easily to analogies (for ex-
ample, tickets versus guest lists to represent capabilities and access
control lists when discussing file protection), this can lead to stu-
dents answering based on details of the chosen analogy, rather than
the underlying concept. On the other hand, if a CI is written in
technical prose, students may be intimidated by the prospect of an
incomprehensible test on the first day of class. It may be desirable
to administer only accessible questions as a pre-test, followed by a
post-test including those and other more technical questions.

4.6 Intellectual property

How should a concept inventory be copyrighted or
licensed?

Finally, CI developers must answer questions of copyright and
ownership. Will individual instructors own questions they con-
tribute? Will the test as a whole have a single copyright? If so,
who will own the copyright?

Current licenses that allow for sharing and modification of work,
such as the Creative Commons license [2], may be a practical so-
lution. We believe that the chosen license should allow modifica-
tion of the work, to prevent the concept inventory from becoming
locked by one group of people (in the parlance of the open source
community, it should be possible to fork a version). There are also
questions of whether commercial use should be permitted and how
to copyright development metadata. A license such as the Open
Data Commons [4] may be more reasonable for sharing results.

5. CONCLUSION
The overarching objective of our concept inventory (CI) pro-

posal is to enhance CS education, and the research surrounding it,
by enabling data-driven comparisons of different pedagogical tech-
niques. Preliminary concept inventories for CS have exposed the
value of measuring student understanding of fundamental subject
area concepts. The available results strongly suggest that students
are not mastering the ideas that every student ought to know after
completing the corresponding course. CIs represent reliable tools
for measuring this high-level mastery, and their results provide
desperately-needed factual data for informing pedagogical changes
to improve student concept mastery.

We believe that a comprehensive collection of concept invento-
ries would serve as a critical step towards achieving this lofty goal.
CIs in other STEM disciplines, most notably physics, have already
demonstrated a significant and lasting impact on educational meth-
ods and research in their fields. If we know it will be effective, why
shouldn’t we adopt a similar approach?

Some of those already working on CI development have fol-
lowed the traditional Delphi Process development cycle which aims
to ensure CI quality by requiring consensus from a panel of ex-
perts. Unfortunately, necessitating such formality is expensive and
requires a significant time commitment. We laud the recent efforts
by computer science education researchers in rigorously producing

CIs for computer science classes. However, most of the courses in
our field still have no such exam available. Thus we advocate an
alternative: reducing CI developmental rigidity in favor of an agile
process that encourages broad collaboration and adapts to changes
in technology and course content.
In this paper, we explored the application of open source soft-

ware principles to computer science concept inventory develop-
ment. The open source development model offers three promising
advantages over current CI practices: (1) a collaborative develop-
ment strategy capable of producing a quality product, (2) a clearly
defined path for revision when content changes, and (3) a means to
manage versioning of questions/modules/exams in order to com-
pare results for research purposes.
This work identifies clear goals for developing high-quality, col-

laborative concept inventories whose open-access and availability
will strongly support CS education research. We propose a ba-
sic framework for “open source” CI development, identify the ob-
stacles faced by such a framework, and sketch the design space
and trade-offs necessary to make our vision a reality. We believe
that the design challenges of our proposal are surely tractable for a
highly-motivated community like ours.
Ultimately, we hope that this paper will intensify the discussion

of concept inventories in computer science, inspire new thinking
about concept inventory development, and elicit increased partici-
pation in CI development from the CS education research commu-
nity. The best way for an open development process to succeed is
with your help!

6. ACKNOWLEDGMENTS
Thank you to the anonymous reviewers for their suggestions.

This work was supported in part by NSF grant 1140731.

7. REFERENCES

[1] Concurrent versions system.
http://cvs.nongnu.org/.

[2] Creative commons. http://creativecommons.org/.

[3] Git version control. http://git-scm.com/.

[4] Open data commons.
http://opendatacommons.org/.

[5] Subversion. http://subversion.tigris.org/.

[6] P. Bayman and R. Mayer. A diagnosis of beginning
programmers’ misconceptions of basic programming
statements. Communications of the ACM, 26(9), 1983.

[7] J. Bonar and E. Soloway. Preprogramming knowledge: A
major source of misconceptions in novice programmers.
Human-Computer Interaction, 1(2):133–161, 1985.

[8] T.-Y. Chen, G. Lewandowski, R. McCartney, K. Sanders, and
B. Simon. Commonsense Computing: Using student sorting
abilities to improve instruction. In SIGCSE, 2007.

[9] J. Corbet. A guide to the kernel development process.
https://www.kernel.org/doc/Documentation/development-
process/.

[10] C. H. Crouch and E. Mazur. Peer Instruction: Ten years of
experience and results. American Journal of Physics, 69(9),
September 2001.

[11] H. Danielsiek, W. Paul, and J. Vahrenhold. Detecting and
understanding students’ misconceptions related to algorithms
and data structures. In SIGCSE, 2012.

[12] D. Evans, G. Gray, S. Krause, J. Martin, C. Midkiff,
B. Notaros, M. Pavelich, et al. Progress on concept inventory
assessment tools. In IEEE Frontiers in Education, 2003.

[13] K. Goldman, P. Gross, C. Heeren, G. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Identifying

important and difficult concepts in introductory computing
courses using a Delphi process. In SIGCSE, 2008.

[14] K. Goldman, P. Gross, C. Heeren, G. L. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Setting the scope
of concept inventories for introductory computing subjects.
ACM Transactions on Computing Education (TOCE),
10(2):5, 2010.

[15] R. Hake. Interactive-engagement versus traditional methods:
A six-thousand-student survey of mechanics test data for
introductory physics courses. American Journal of Physics,
66:64, 1998.

[16] G. Herman and J. Handzik. A preliminary pedagogical
comparison study using the digital logic concept inventory.
In IEEE Frontiers in Education, 2010.

[17] G. Herman, M. Loui, and C. Zilles. Creating the Digital
Logic Concept Inventory. In SIGCSE, 2010.

[18] D. Hestenes, M. Wells, and G. Swackhamer. Force Concept
Inventory. The Physics Teacher, 30, March 1992.

[19] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and G. L.
Herman. Identifying student misconceptions of
programming. In SIGCSE, 2010.

[20] J. C. Libarkin and S. W. Anderson. Assessment of learning in
entry-level geoscience courses: Results from the geoscience
concept inventory. Journal of Geoscience Education, 53(4),
2005.

[21] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer,
M. Lindholm, R. McCartney, J. E. Moström, K. Sanders,
O. Seppälä, et al. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE, 2004.

[22] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating
the viability of mental models held by novice programmers.
ACM SIGCSE Bulletin, 39(1), 2007.

[23] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting,
and T. Wilusz. A multi-national, multi-institutional study of
assessment of programming skills of first-year cs students.
SIGCSE, 2001.

[24] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
mozilla. ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(3):309–346, 2002.

[25] R. Pea. Language-independent conceptual "bugs" in novice
programming. Journal of Educational Computing Research,
2(1):25–36, 1986.

[26] L. Porter, S. Garcia, H.-W. Tseng, and D. Zingaro.
Evaluating student understanding of core concepts in
computer architecture. In Proceedings of the 18th Annual
Conference on Innovation and Technology in Computer

Science Education, 2013.

[27] E. Raymond. The cathedral and the bazaar. Knowledge,
Technology & Policy, 12(3):23–49, 1999.

[28] A. Tew and M. Guzdial. Developing a validated assessment
of fundamental CS1 concepts. In SIGCSE, 2010.

[29] A. E. Tew. Assessing fundamental introductory computing
concept knowledge in a language independent manner.
Georgia Institute of Technology, 2010.

[30] A. E. Tew and M. Guzdial. The fcs1: a language independent
assessment of cs1 knowledge. In SIGCSE, 2011.

[31] A. E. Tew, W. M. McCracken, and M. Guzdial. Impact of
alternative introductory courses on programming concept
understanding. 2005.

[32] K. C. Webb and C. Taylor. Developing a pre-and post-course
concept inventory to gauge operating systems learning. In
SIGCSE, 2014.

