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Abstract—We describe a new distributed I/O software archi-
tecture to support remote applications interacting with local I/O
devices based on the concept of a networked device driver. Our
goal is both network transparency and high extensibility/ease
of customization in support of the vastly different types of
applications and devices that can benefit from remote I/O,
especially relevant in cloud computing contexts. A networked
device driver logically connects a device at one network end-
point and an application at another, and allows the I/O stream
between them to be modified by a set of pipelined transformation
modules. Each transformation module comes in a pair, operating
on each side of the network, with one side typically applying some
operation and the other side applying a corresponding one (e.g.,
one that reverses the original transformation). Because of the
paired nature of transformation modules, the system is capable of
supporting the modification of the I/O stream in a variety of ways
to compensate for network issues while remaining transparent to
the application, and also results in a high degree of extensibility.
This is achieved with a mostly user-level implementation that
incurs a relatively low degree of overhead.

I. INTRODUCTION

In this work, we present the design of a system software
architecture where devices can communicate over the network
with applications transparently, without applications having to
be specifically designed for networked use. Legacy applica-
tions that were designed to run with devices locally should
be able to run on this system with no modification. The
architecture is based on the concept of a networked device
driver, in which a device driver is split into two halves, one
half running on the client with the device, and the other half
on the server with the application. Network communications
occurs between the two halves, transparent to both the device
and application.

A motivation for remote I/O in general is the ability
to integrate computation-and-data intensive applications with
lightweight devices. A typical approach to this is thin client
computing, where the application is moved from the local
machine to a more powerful machine, and all user I/O is
forwarded. A drawback to traditional thin clients is that they
were not designed to support the current wide array of I/O
devices, typically limiting their support to the mouse, keyboard
and video card.

In this work, we present a general system which can be eas-
ily extended to any device. Given the plethora of new devices

being developed, and the growing number of applications for
which it is desired to use them, a general system for supporting
remote I/O is very relevant, especially in cloud computing
contexts that are becoming more and more prevalent. The
ability to quickly integrate new devices, as well as the ability
to flexibly modify an I/O stream that may be highly specific
to a particular device and application, are key capabilities of
our system.

For example, one of the chief issues of remote I/O is
the disruption to the flow of messages between device and
application caused by the network. In addition to performance-
related issues, the network may introduce security issues as
well. While previous and long-standing work on network
protocols have addressed these issues at the network/system
level, it is generally difficult for the user to configure a protocol
that is tailor-made for the application and device(s) they are
about to invoke, and one that may take into account existing
or predicted network conditions. Consequently, depending on
the specific device, application, and qualities of the network,
the ideal matter of compensating for these issues will vary.
To address this, our architecture supports the creation of cus-
tomizable transformation modules, designed to dynamically
process device or application information.

In this paper, we describe the System Architecture, Imple-
mentation, and selected Performance Results. For more detail,
including more experimental results, please see [1].

II. SYSTEM ARCHITECTURE

A. Architecture Summary

The system architecture is best understood as a series of
modules, each of which can be created separately and com-
bined with existing modules to form a networked device driver.
The networked device driver spans both local and remote
machines, half operating on one and half on the other, as
shown in Figure 1. The resulting networked device driver must
be able to support message passing via the network, between a
device and application which reside on separate machines. To
support network transparency, all network-related computation
is contained within this driver. Messages, created by either
device or application, are transformed by one side of the
networked device driver, and passed over the network. The
other half of the networked device driver reads these messages



from the network, reverses the transformation to preserve
transparency, and forwards them to their destination.

A networked device driver manages an I/O stream, i.e., a
sequence of messages, traveling in a single direction, either
from device to application, or from application to device.
The messages are created, and retrieved from their source by
either the device communication module or the application
communication module. They then go through an optional
series of transformation modules, each of which changes the
messages in some fashion. The network modules then pass
the messages over the network. They then travel through a
matching series of transformation modules on the destination
machine, which reverse any changes the original transforma-
tion modules made. Lastly, they are sent to either the device
communication module or application communication module,
which transmits them to their final destination.

The transformation modules allow messages to be modified
to be more effectively transmitted over the network, only
to then be returned to their original format to be passed to
their final destination so that the network seems transparent.
In addition, having separate and possibly asymmetric net-
worked device drivers for application-to-device and device-to-
application communication allows our system to handle each
communication stream in a way that best fits its unique data
characteristics.

B. Implementation

We designed the system so that it is simple to create and
customize networked device drivers. It is also designed to
be easily extensible, so that device manufacturers, application
designers and end users can all build system modules that
meet their unique needs. With this in mind, we implemented
the system predominantly at the user level (i.e., outside the
operating system). This avoids the dangers of running arbitrary
code in the kernel, both in terms of possible malicious access,
and system failures on errors. Our system uses the existing
kernel scheduler, with each module running as a separate
user-level process. This also allows processes to automatically
block when there is no more data for them to process. All
modules except the application communication module run
exclusively at user level.

To create a networked device driver for a new device, a
designer needs to provide a device communication module that
uses the API for the device, and an application communication
module which follows the interface of the original driver for
the device. These new modules can be combined with any
existing transformation and network modules to form a new
networked device driver.

C. Device Communication Module

The device communication module is simply a user-level
application which interacts with the device using its API.
It receives information from the original, unmodified device
driver supplied by the device manufacturers or operating
system. Each device must have its own custom device com-
munication module, since the module communicates with the
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Fig. 1. The software architecture of a networked device driver. Note that
only the application driver and raw driver run within the kernel.

device using its specific API. However, the generality of the
device communication module may vary: for example, we
wrote a generic mouse device communication module which
uses generic linux mouse events, but a device communication
module for a specific mouse could be written on a lower level.

D. Network Modules

There are a pair of network modules, one on each machine.
Their job is to send data over the network; all other function-
ality, no matter how closely related to the network protocol,
is done by the transformation modules. The processing the
network modules do is to send an entire update at a time,
rather than transmitting partial updates as they are received.

We have implemented network modules using the TCP
protocol. For applications and devices where speed is more
important than ordering or consistency, UDP may be a natural
fit, and could easily be implemented. It would also be easy to
create modules for new or experimental network protocols.

E. Application Communication Module

The application communication module communicates with
the application using the interface of the original device driver
for the device. Each device must have its own, custom-written
application communication module, since the module imitates
the original driver for the device, to provide transparency.
Because of this, the application communication module is the
one module which may run within the kernel. If the original
device driver runs entirely within the kernel, the application
communication module will have two pieces, one of which
runs at user-level, and one which runs within the kernel. This
kernel component is required for the application to be able to
use the driver without modification.

III. TRANSFORMATION MODULES

Messages pass through a set of optional, paired transfor-
mation modules before they reach their destination. These
modules add extra functionality to the system, while their
pairing allows us to keep transparency. Each module performs
a specific task, providing extra functionality for the system.
What extra functionality is required depends on the device,
the needs of the application, and the characteristics of the
network. Some example functions include averaging multiple
updates together, buffering, compression, encryption, and syn-
chronizing multiple devices.



The level of device specificity will vary with the func-
tionality. For example, averaging messages together requires
semantic knowledge about the message format, and so av-
eraging modules must be designed for a specific device. In
contrast, functions such as encryption do not need to know
anything about message format, and so can be used for any
device. Transformation modules for specific devices can easily
be combined with generic transformation modules, making it
simple to leverage existing modules for a customized network
device driver.

Any changes made to a message must eventually be re-
versed, to preserve transparency. For example, if a message
is compressed before it is sent over the network, it must
be decompressed before it reaches the application. These
reversals must be performed in the opposite order of the
original operations: if a message was compressed and then
encrypted, it must be decrypted and then decompressed. We
define transformation module pairs, one of which performs
an action on the client, and the other reversing the action on
the server. These pairs are automatically arranged so that their
order on the server is the reverse of their order on the client.

Each message passed between the modules has a header
specifying the length of the message, and any optional in-
formation about the message needed by the transformation
module’s pair module to reverse the transformation. This extra
header information is stripped off by the module on the server,
so that the message reaches further modules in the state that
they expect.

A pair of transformation modules may communicate directly
with each other to exchange control information about data
processing. We support this out-of-band communication, as
the messages between the transformation modules will have
different data characteristics than the messages between the
device and application. This allows transformation modules to
change how they are processing data as a pair, to respond to
changes in network conditions.

IV. PERFORMANCE

In this section, we present performance results of various
tests we ran on different aspects of our implementation. The
purpose of these tests was to ensure that our approach to
implementation (separating modules into different processes,
working at the user-level, etc) was not causing overly high
overhead. With this in mind, we test the effects of adding
transformation modules specifically, as well as testing the
system as a whole.

To measure performance, we ran experiments on two com-
puters, both off-the-shelf Dell PCs. We used a Dell Optiplex
755 with an Intel Core 2 Duo chip and a 333 MHz FSB clock,
and a Dell Optiplex 320 with an Intel Celeron Chip and a 133
MHz FSB clock. We used these machines because they are
both examples of relatively inexpensive off-the-shelf hardware
that would be available to anyone. Both machines are running
Ubuntu Linux. Both machines have wired connections to a
relatively fast campus network, with a sample ping round-trip
time of 0.235 msec.

TABLE I
THE AVERAGE TIME TO FOR A MESSAGE, CONSISTING OF A RANDOM
CHARACTER ARRAY, TO TRAVERSE THE SYSTEM, IN MICROSECONDS.

bytes 1000 5000 10000 100000 1024000
usec 632 819 1287 10320 91988

A. Base Speed of Drivers

We first wanted a base measurement of how long it will take
a message to travel along the data stream from the source to
the sink, on the most basic of network device drivers. This tells
us how much latency our system is adding to the device, and
helps determine if our system adds an unreasonable amount
of overhead.

To measure this, we created a basic network device driver,
consisting of a device communication module, two network
modules, one on each side of the network, and an application
module. We measured the end-to-end time for a variety of
message sizes, as our system must work for all devices, regard-
less of how much data they produce. To test this, we created
a synthetic device module which produces a random character
array in a specified size every two seconds. The device module
paused for two seconds between sending messages to avoid
any bandwidth issues from sending multiple messages at a
time. When the character array was created, it was time
stamped. After it had reached the application communication
module, another time stamp was taken, and the first time stamp
was subtracted from the second to determine the travel time
of the message.

Our experiment was made more complicated because we
could not synchronize clocks across machines with enough
precision to make our measurements. To get reliable times,
the timestamps had to be created in both the device commu-
nication module and the application communication module on
the same machine. To do this, the network device driver was
essentially doubled: two network modules are created on each
machine, one sending and one receiving, and the application
communication module is moved onto the same machine as
the device communication module. To get the end-to-end times
from the round trip times being measured, the times were
divided by two. All measurements are averaged over 450 tests,
as this gave us sufficient data points while also allowing the
tests to complete in a reasonable time.

Our results are shown in Table I. We demonstrated that our
system incurs a relatively small amount of overhead, especially
for smaller message sizes. For example, the default rate for
polling a USB mouse in both Windows Vista and Ubuntu
Linux is 125 Hz, or every 8000 usec. At the base rate of 632
usec for a 1000 character array (much larger than the data
from a mouse), adding a network device driver would not add
a significant delay to a USB mouse.

B. Buffering

To demonstrate our buffer modules’ ability to recreate the
timing of updates across the network, we created two network
device drivers, one with the buffer modules, and one without.



We used a version of the spacenav driver that automatically
generates updates every 16 msec. These updates consist of a
time stamp and 6 integer values. This was read by the device
communication module, as normal. It was then passed to the
buffering module, and then to the network module and on the
sink side, it was read by the network module, passed to the
buffering module, and then to the application communication
module. We set the sink buffer module to have a maximum
buffer of 10 updates, and the source side buffer to have a
maximum buffer of 400 updates. We measured the inter-
message distance in the application communication module.
We must measure it here instead of in the application because
the application communication module strips off timestamps
before passing an update to the application, to preserve trans-
parency.

We compared the results from our buffered network device
driver against a network device driver which was set up exactly
the same, except without the buffering module. Both network
device drivers use TCP-based network modules.

To measure the jitter in both systems, we compared the
inter-message time for the updates when they were generated
to the inter-message time when they were received. Since each
update is timestamped by the device communication module
when it is generated, we were able to create an application
communication module for testing purposes which generated a
timestamp when it received a new update, used that to compute
the time between it and the last update received, and compared
it to the time between their generation timestamps. Our jitter
metric is the difference between the inter-message times at
generation and on receiving.

We ran this experiment over different amounts of net-
work jitter varying from 5 msec to 200 msec, created using
netem [2]. Netem creates this jitter by delaying sending each
packet for a random number of milliseconds between 0 and
N, where N is the specified maximum. We then averaged over
200 runs. In Figure 2, we show the average offset time as
well as the standard deviation. Under the buffered system, the
inter-message time at receiving remained very close to the

Fig. 2. Average jitter, with standard deviation. Using the buffering module
drastically lowers the effects of jitter on the system.

Fig. 3. End-to-end times for pipes, across the entire system, in microseconds.
Each transformation module adds an average of 6.6 percent of overhead.

timing when the updates were originally sent. At 200 msec of
jitter, the difference averaged less than 1.5 msec, and until the
added jitter was over 50 msec, it averaged less than .1 msec
difference. In contrast, without the buffering the difference
between timing at send and receive immediately becomes
apparent, with just 5 msec of jitter causing an average 3.6
msec time difference, and going all the way up to an average
of 28.8 msec of difference at 200 msec of jitter. The standard
deviations also remain much lower under the buffered system:
it was under 1 msec with 50 msec of jitter with buffering,
while without buffering it was already at 12 msec.

C. Adding Transformation Modules

We wished to determine what effect adding a transformation
module pair has on the time it takes for a message to cross
the entire system. This told us how much extra time we add
to each message with new transformation. Our experimental
setup was the same as in Section IV-A, with the addition
of varying numbers of transformation modules. We created
transformation modules which simply passed the data to the
next module without performing any computation on it, to
observe how much overhead was due to the copying itself.

For a 1000 character array, it took 632 usec to completely
traverse the system with no transformation modules, and 837
usec to traverse it with 6 transformation modules. It took
a 1024000 character array 91988 usec to complete the pipe
system with no transformation modules, and 122761 usec with
6 transformation modules.

Each transformation module added an average of 6.6 percent
of overhead. We also saw that the speed of the system is
heavily dependent on message size. A networked device driver
with 1000 character messages and 6 transformation modules
had an end-to-end time of only 837 usecs, while a device with
1024000 character messages had an end-to-end time of 91988
usecs with no transformation modules.



V. RELATED WORK

Two typical thin client techniques are demonstrated by
X-Windows and VNC [3], [4]. In X-Windows, high-level
commands are captured on the application machine, and
forwarded to the device machine. In VNC, pixel data is
copied from the framebuffer and sent to the client, where
it is displayed by an application. Both are limited in that it
they are designed expressly for mouse, keyboard and display.
In addition, applications must be written expressly for X. A
classic approach to using modules to alter data within a single
machine is UNIX Streams, in which a stream between an
application and a device passes through modules that alter the
data being passed through them [5]. This system runs within
the kernel, and is not designed specifically as a distributed
system (though one can be built out of them).

USB over IP sends device data at the device controller
level, below the individual driver [6]. This allows network
transparency and support of any USB device. However, there
is no way to allow for specialized treatment of messages from
different devices. THINC [7] and CameraCast [8] are both
systems designed for video which use logical drivers. These
systems are major improvements in dealing with remote I/O
in a more abstract way. However, they are both targeted for
a specific set of devices, albeit important ones. In addition,
THINC does not allow modules to process device data.

Many systems exist that support distributed systems for
devices within a specific area, and allow applications to be
written for these systems, frequently allowing data from the
device to be sent through a series of processing modules. The
Berkeley Continuous Media Toolkit does this for multimedia
applications, the Cascades system does this for sensor net-
works, and a large variety of these systems exist within the
virtual reality domain [9], [10], [11], [12], [13]. The RAMP
system also creates middleware at the application layer for
the spontaneous creation of networks which share content and
resources [14].

VI. CONCLUSION

We created the networked device driver architecture to
support remote I/O devices in a manner which was both simple
and flexible. Network transparency, a major goal, is achieved
by encapsulating all networking and related processing of data
inside of the device driver. This means that applications will
not have to be modified to work with remote devices. Cus-
tomizability is supported via transformation modules. These
modules are invisible to the application and device, yet let
the system be customized for the exact needs of an individual
application and device, and their particular network conditions.

We implemented transformation modules as separate pro-
cesses that communicate via pipes, making it easy to add and
remove transformation modules to drivers to support the needs
of different devices and applications. Our user-level approach
also makes it simple for developers to create new networked
device drivers, as we leverage existing mechanisms as much as
possible, while avoiding the potential to introduce dangerous
bugs at the kernel level.

Our system’s basic abstraction is a one-way communication
path between the device and application, generally separated
by a network, and which can be modified by paired transfor-
mation modules. By designing the system for a device and
application at this level, a high degree of customization is
possible. Modules can be written for the exact data profile of
this communication: the size, frequency, and format of updates
can all be considered, both in how they are produced by the
source, and what the sink requires from them.

Our performance experiments showed that a user-level im-
plementation relying on standard operating system processes
and pipes does not create significant overhead for at least small
but expectedly typical numbers of transformation modules.
Finally, we demonstrated how adding transformation modules
such as buffering can cause a significant gain in performance
for certain common and important application scenarios. As
future work, we plan to look at both scalability issues, and
how the system performs over wireless networks.
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