
A Remote I/O Solution for the Cloud

Cynthia Taylor
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
cbtaylor@cs.ucsd.edu

Joseph Pasquale
Computer Science and Engineering
University of California, San Diego

La Jolla, CA
pasquale@cs.ucsd.edu

Abstract—With applications increasingly moving to the
cloud, it is becoming common for an application to be separated
by the network from the I/O devices with which the user is
interacting. Currently this requires modifying the application
to receive user input from the network rather than the device.
We present a new I/O architecture in which the device driver
is split into two parts, with the network between them. This
architecture makes the network invisible to both device and
application, allowing both of them to work unmodified. Our
architecture also supports transformation modules, each of
which comes in a pair that operates on each side of the network.
Via these module pairs, the resulting system is capable of
supporting the modification of the I/O stream in a variety
of ways to compensate for the network, while remaining
transparent to the application.

I. INTRODUCTION

With more users turning to the cloud for both data storage
and software services, there is a rising need for the cloud
to support applications that require remote I/O. By this we
mean obtaining inputs or delivering outputs to I/O devices
that are separated from the application by a network. The
I/O devices are typically located where the user is located,
whereas the application is located where the computing
resources are, somewhere in the cloud.

Nowhere is this issue more evident than in moving legacy
applications to the cloud, including applications that interact
with a wide variety of I/O devices. The traditional approach
to solving this has been thin clients, but thin clients typically
support only a specific subset of devices, generally limited
to a mouse, keyboard, and video. To support easily moving
existing applications to the cloud, we require a flexible
solution that will allow us to transparently interpose the
network between any application and device.

Currently, moving applications that work with exotic
devices across the network may require completely rewriting
the application to take input from the network, rather than
directly from the device driver. If the source code is not
available, this involves tactics such as automatically rewrit-
ing the GUI and manually translating and forwarding user
input[1], [2]. Supporting network transparency means exist-
ing applications can interact with remote devices without
changes. This avoids having to rewrite applications for the
cloud and related issues such as parallel code maintenance.

This also allows us to easily move legacy applications, for
which source code is often not available, into the cloud.

Moving applications to the cloud introduces many factors
which can degrade a user’s experience with an application.
The presence of an intervening network can introduce de-
lays, bandwidth restrictions, and uneven transmission rates
that result in problems such as jitter. The network may
also be insecure. Consequently, we require a solution that
allows for flexibility and mediation, one where the data
being transmitted can be modified between the application
and device, performing operations such as compression and
encryption, and yet, maintaining transparency as a primary
goal.

In this paper, we present a system architecture that
supports transparency to the device and application, while
still allowing the transformation of the data passing be-
tween them. We support transparency with the concept of
a networked device driver, in which a device driver is split
into two halves, one half running on the client with the
device, and the other half on the server with the application.
Network communications occurs between the two halves,
transparent to both the device and application.

To transform the data stream, our architecture supports
transformation modules that enact some change on the data
as it is passed through them. To preserve transparency, these
modules are created in pairs, one on either side of the
network. A simple example of coordinated pair operation is
where one module compresses the data and its corresponding
module decompresses the data. More sophisticated examples
involve cooperative send-side and receive-side buffering,
bundling and unbundling of data blocks, and bandwidth-
reducing averaging in response to dynamic networking con-
ditions. Thus, we are able to both process data to compensate
for the network and forward data to the application in its
original format.

Applications in the cloud are often executed in virtual
machines, allowing for benefits such as consolidation of
resources, application migration and security. However, this
means that input devices must also be virtualized, adding ad-
ditional complexity and overhead to the hypervisor [3]. Since
our architecture virtualizes the device driver by splitting it
into two parts, the application half of the driver can run



server 

networked device driver 

client 

device 

device 
driver 

device 
module network 

module 
network 
module 

network 
card 

network 
card 

application 
module 

application 

network 

networked device driver 

trans1 transN … transN’ trans1’ … 

Figure 1. The networked device driver system architecture showing how I/O data flows through networked device driver. The data stream is sourced at
the device and sinked at the application. A set of transformation modules transform the data stream, and come in pairs (e.g., transx and transx’).

entirely within the virtual machine, without the hypervisor
having to virtualize the device.

II. SYSTEM ARCHITECTURE

A. Architecture Summary

At its most basic level, the system architecture must
support the passing of messages between a device and an ap-
plication, each on a different machine, communicating over
the network. To preserve transparency, we encapsulate all
network and network-related operations within a networked
device driver, as shown in Fig.1. Messages are created at
either the device or application, passed through one half of
the networked device driver, possibly transformed in some
manner, and sent over the network. On the other machine,
they are read from the network, the transformation, if any, is
reversed, and they are passed on to their destination (either
application or device).

The system consists of four types of modules. The appli-
cation communication module is responsible for translating
between the application and the networked device driver.
Similarly, the device communication module translates be-
tween the device and the networked device driver. Network
modules send and receive messages over the network. Lastly,
optional transformation modules (to be discussed in Section
III) modify messages as they are sent through the system,
making changes to them, e.g., to compensate for the effects
of the network.

Throughout this paper, we refer to the machine with the
I/O devices as the client, and the application machine as the
server. We also refer to the originator of the updates (either
device or application) as the “source,” and the recipient of
the messages (application if the source is the device, device
if the source is the application) as the “sink.”

B. Data Streams

We refer to the main flow of communication in a net-
worked device driver as a data stream. The data stream
consists of updates that travel between the device and
application, as illustrated in Fig.1. They travel in only one

direction, being sourced at one end, and sinked at the other
end. Updates are created by the device or application, and
retrieved by the communication module. They are then
passed through any transformation modules on the source
machine, with each transformation module modifying the
update in some way. The network module on the source
machine then sends the updates over the network to the
network module on the sink machine. They are then passed
to any corresponding transformation modules, where each
module reverses the modification applied by its matching
transformation modules on the source machine. The updates
are then sent to the communication module, which feeds
them to the sink.

Our system allows messages to be modified/repackaged
for them to be effectively sent over the network, but still
returned to their original form to be passed to the sink by
its communication module in a network-transparent fashion.
Each networked device driver has at least one data stream.
In most cases, the networked device driver will have two
data streams, once sourced at the application and sinked
at the device, and one sourced at the device and sinked
at the application. Having application-to-device and device-
to-application data streams handled separately and in an
asymmetric fashion allows the system to handle each data
stream in a way that best fits its unique data profile.

C. Header Format

Each message in the I/O stream is encapsulated in a
container [4], which has a short header. Fields in this header
are the size of the message, and a timestamp added by the
communication module when the container is created. In
addition to this, individual transformation module pairs may
add their own header fields after these two. Headers for
specific transformation modules are added by one half of
the pair, and stripped off by the other half of the pair. Thus,
they are encapsulated with the message for all transformation
modules in between the pair. This allows for all of the
transformation modules to access the most frequently needed
information (size of message, and time created), while



individual modules can add information about the message
that is specific to their modification, and have it be ignored
by the rest of the modules.

D. Device Communication Module

The function of the device communication module is to
receive information from the raw driver, i.e., the original,
unmodified device driver supplied by the device manufactur-
ers. The raw driver may be strictly a kernel-level driver or it
may include a user-level component. The raw driver operates
normally, communicating by either providing information to
a register for polling, or by generating interrupts.

To get the information from the raw driver, the device
communication module interacts with the driver through its
API, just as any other application would. Since it uses an
API specific to the device, the device communication module
must be custom-written for each device. It may wait for
events raised by the device or poll, depending on how a
particular API works. The device communication module
operates at the user level. After the device communication
module has received information from the raw driver, it
forwards it to the first of the transformation modules or to
the network module.

E. Application Communication Module

The last transformation module passes the update to the
application communication module, which communicates
with the application using the raw driver interface. Since
the application communication module is based on the raw
driver for the device, it must be custom-written for the
device. If the raw driver is purely a kernel driver, the
application communication module consists of both a user-
level component and a kernel-level component. The kernel-
level component is necessary for the application to read from
the device without modification, and so we include it to
support transparency. For devices with user-level drivers, the
user-level component of the driver may simply be rewritten
to accept input from a pipe, rather than from the raw driver.

F. Network Modules

The network modules are a pair of modules, one on each
side of the network. The role of the network module is to
send data over the network; any higher level functionality,
such as buffering or ordering of updates, is left to the trans-
formation modules. The only additional work the network
module does is to send an entire update to the transformation
modules, even if it takes multiple reads from the network,
rather than sending partial updates as it receives them.

The network modules are generic, can be used with
any device, and are parameterized so that an appropriate
standard network protocol can be used. For example, TCP
may be appropriate for non real-time applications reading
from video devices, where large updates may be split up
into multiple packets, and it is important to receive packets in

order. For devices that send smaller updates, where updates
are already timestamped or ordering does not matter, UDP
is a natural fit. Modules for new or experimental network
protocols may also be created.

III. TRANSFORMATION MODULES

Messages generated at either the application or device
pass through a series of optional transformation modules be-
fore they reach their destination. These modules are designed
to give the system the ability to add extra functionality,
without losing the advantages of transparency. Each module
is designed to perform a specific task, whether it is averaging
messages from the device, encrypting or decrypting, or doing
more complex video processing such as face finding.

The type of additional functionality required will vary
for each application. Some applications only require that
each update be buffered. Applications that have real time
constraints may make do with only the latest updates or an
average of past updates. Applications that process a lot of
data may benefit from compressing information before it is
sent over the network as a performance optimization. Sensi-
tive applications may benefit from having their information
encrypted before sending. Because of this, the ideal source
of information on how the networked device driver should
act can be the application developers or end users.

Different functionality will require different levels of cus-
tomization for the device. A function such as averaging will
require knowledge of the exact message format, especially
for a message which may contain multiple parts, e.g. an
X coordinate, a Y coordinate, and a timestamp. However,
functions similar to compression will be completely agnostic
about the format of the data they are acting on, and can
be used for all devices. In the middle lie functions like
downsampling video, which will need to be aware of the
video width, height, and general format, but can be used
across multiple devices.

1) Transformation Module Pairs: To preserve trans-
parency, any change made to the format of the message
must later be undone. If a message is encrypted on the
client side, it must be decrypted on the server side before
it reaches the application. Operations must be undone in
reverse of how they were performed: if encryption is done
before compression, then decompression must be done be-
fore decryption. Notice the resulting ordering this implies
in the transformation modules in Fig.1. Some transformation
modules (e.g., averaging) change the content of the message
rather than its form, and thus may have no reverse of their
action. Each such module is paired with a “no-op” module.

2) Functionality: We now present examples of transfor-
mation modules. These illustrate the kinds of tasks transfor-
mation modules are designed for, and what part they play
in our system.

Averaging: Similar to receiving the most recent update
at set intervals, some applications work best with an average



of the updates received in a time period. Averaging requires
knowledge of the format of the message, since many updates
contain attributes that need to be treated separately (e.g., x
and y coordinates, timestamps). Thus, averaging modules
are written for a specific update format.

Buffering: For devices such as video where the rate of
the updates matter more than their freshness, users may want
to buffer. Buffering modules work as follows: On the sink
machine, the module takes as parameters a minimum and
maximum number of updates to buffer. When the number of
messages it is holding falls below the minimum parameter,
it sends a request out-of-band to the module on the source
machine, requesting the number of updates that will bring it
back to the maximum. The module on the source machine
releases up to that number of updates into the data stream.
The module on the source machine also takes as a parameter
maximum number of updates to buffer; when it reaches that
limit, it discards earlier updates.

Bundling: The bundling module is designed to send
several small updates as a single network packet. It takes as
a parameter the number of updates to be bundled into one
container. On the source side, the module collects updates
until it has the required number, then packages them into
one container and passes it to the next module in the data
stream. On the sink side, the module unpacks the container,
and release the updates inside back into the data stream using
the time intervals they were originally sent at.

Compressing: Compression is useful to avoid sending
a large amount of data over slow networks. Since mes-
sage lengths are prepended to updates, it does not matter
that compression changes the update size. For example, in
our prototype, we implemented compression/decompression
modules using the zlib compression library.

Encrypting/Decrypting: When using sensitive applica-
tions over insecure networks, users may wish to add security
by encrypting updates. Since all the module needs to know
to encrypt or decrypt is the length of the message, this easily
generalizes to multiple devices. The transformation module
on the source side of the driver encrypts the message, and
the module on the sink side decrypts it. In our prototype,
we implemented AES encryption modules using OpenSSL.

Multiplexing: Since a key advantage of the cloud is
the ability to perform distributed processing, our system
needs the ability to send input from a device to multiple
applications on multiple machines. We create transformation
modules which multiplex data in appropriate ways. For
example, depending on video input is being processed, we
may want all the video to go to every machine, different
frames to go to different machines, or different portions of
each frame to go to different machines.

Periodic Updates: Some applications do not require
every device update, and only need to receive the most recent
update at set time periods. This transformation module takes
a time constant and sends the latest update at set intervals.

Pre-Fetching: For applications that request updates and
exploit some sort of locality, requests for updates clustering
around the current update are artificially generated and sent
to the device, with the responses stored on the server side
awaiting the application’s request. This requires specific
knowledge of application behavior and request formats.

Synchronizing Multiple Data Streams: For applications
that receive data from multiple devices, it may be necessary
to synchronize the updates from these devices. This is
achieved by time stamping the updates as they are generated,
and ordering them by these time stamps on the sink machine.
The updates may either be combined into one data stream,
or continue as two separate data streams.

Additional Functionality: Applications may extend
their functionality by performing modifications to the I/O
stream. For example, video frames can resized, color-shifted,
or even have computer vision techniques such as object-
tracking added. Since these functions need to have specific
knowledge about the content and format of messages, they
need to be designed for a specific device.

3) Out-of-Band Messages: All transformation modules
support out-of-band messaging, i.e., the use of a separate
communication “control” channel in addition to the one
carrying the data stream. Out-of-band messages contain
meta-information about how the modules should process
the messages being sent through their stream. For exam-
ple, when a buffer transformation module on the server is
running low on buffered updates, it sends a request for new
updates to the buffer module on the client. This is required
to enable transformation modules to respond as a pair across
the network, especially when reacting to changes in network
or other conditions.

IV. IMPLEMENTATION

One of our design goals is to make it easy to customize
networked device drivers or create new ones. We imple-
ment at the user-level whenever possible, as this avoids
the dangers of running arbitrary code in the kernel, both
in terms of processes creating system failures on errors,
and processes being able to maliciously effect the system.
Running at the user-level also allows us to leverage existing
mechanisms. We use separate processes for each module,
which allows us to use the kernel’s built in scheduling
mechanisms, rather than having to create our own scheduler,
and allows processes to naturally block when there is no
more data for them to process. All device communication
modules, network modules, and transformation modules run
at the user-level.

We only depart from the user-level when necessary to
preserve transparency. Within the application communica-
tion module, we sometimes use kernel modules to create
the device driver interface that the application is familiar
with, as illustrated in Fig.2. Adding this kernel module at
the very end allows us to preserve transparency, while still



server client 

device 

device 
module 

network 
module 

network 
module 

network 
card 

kernel 

network 
card 

device 
driver 

device 
driver 

device 
driver 

application 
driver 

application 
module 

application 

trans1 transN … transN’ trans1’ … 

network 

Figure 2. Only the application driver and raw driver run within the kernel.

giving us all the advantages of running at the user-level for
the rest of the system.

We aim for this system to be as extensible as possible, so
device makers, application creators, and users can all extend
it as they see fit. To add support for a new device, what
must be provided are a raw driver, a device communication
module using the API for that driver, and an application
communication module. These three components will allow
the device to work with all of the pre-existing functionality
provided by the transformation modules.

A. Space Navigator

For our initial implementation, we created a networked
device driver for a 3D mouse device called the Space
Navigator [5]. The Space Navigator is a joystick designed
for manipulating three dimensional objects and spaces. It
produces updates with six different values: 3 translation
values, and 3 rotation values. The device produces new
values at a rate of 62.5 Hz.

To create a device communication module for the Space
Navigator, we create a user-level process that receives events
from the Space Navigator, processes these events into our
update format, and then writes the update(s) to a pipe.

The Space Navigator uses a user-level device driver, so
to create an application communication module for it, we
rewrote the device driver to receive updates from a pipe
rather than from the device. This was a simple change, and
required very few changes to the structure of the driver.
Because this is a modification of the existing driver, and
the driver continues to raise events in the exact same way,
no modification is needed for any application to use our
version of the driver.

B. Mouse and Keyboard

We created networked device drivers for the basic mouse
and keyboard. In linux, the mouse and keyboard both use
evdev events, so we created the modules for them that work
in very similar ways [6]. For the device communication
modules, we create a user level process that reads from the
driver for the device, and captures the events. We then create

an update with the information from the event, and write it
to a pipe.

The application communication module consists of two
parts, a user level process, and a kernel module. The
user level process reads in the update from the pipe, and
writes it to a sysfs node which maps to the kernel module.
The kernel module then generates the evdev event for the
update. Because we used a kernel module to generate evdev
events, the system reacts exactly as though the mouse and
keyboard events had been generated by a physical mouse
and keyboard.

C. Video Card

We access the video card through the frame buffer, the
area of memory that holds the pixel values for the display.
To create the device communication module, we developed
a user level process that reads the framebuffer values, and
then writes them to a pipe. Likewise, for the application
communication module, we read in pixel values from a
pipe, and then write them to the frame buffer. The resulting
framebuffer values are the used by the display.

D. Network Modules

We have implemented network modules that can use either
TCP or UDP (but can easily be extended to use other
network protocols). The network module on the device side
simply reads an update from a pipe and sends it over a socket
to the IP and port specified. Likewise, the network module
on the application side reads an update from a socket, and
writes it to a pipe.

V. PERFORMANCE

In this section, we present performance results of various
tests we ran on different aspects of our implementation. The
purpose of these tests was to ensure that our approach to
implementation (separating modules into different processes,
working at the user-level, etc.) was not causing overly high
overhead. With that in mind, we test the effects of pipes
specifically, as well as a test of the system as a whole.

All tests are performed on a two Dell Optiplex 320
machines with dual-core Intel Celeron Chips and 133 MHz



FSB clocks. We used these machines because they are
examples of relatively inexpensive off-the-shelf hardware.
Both machines are running Ubuntu Linux.

A. Update Speed of Networked Device Drivers vs Standard
Drivers

To calculate how much delay our system added to the time
it takes an application to receive an update, we instrumented
our system and measured. Since the update takes a one
way path over the network, we measured the system in
three discrete parts to get an accurate measurement. All
measurements were taking using the rtdsc and rtdscl registers
to determine the number of clock cycles that had passed, and
converting from clock cycles into milliseconds. We averaged
over 2000 tests for all measurements.

On the driver side, we measured the time it took between
when the device communication module received an update,
and when the network module was ready to send it over
the network: this took an average of 36 microseconds, with
a standard deviation of 9 microseconds. For the network,
we needed to measure a round trip time to make accurate
measurements using the same computer clock. We took a
round trip measurement of the time it took the network
module on the driver side to write an update to the net-
work, the network travel time to the application side, the
application communication module reading the update and
immediately writing it back to the network, the travel time
back to the driver side, and the device communication
module reading the update. We then divided the resulting
measurement by two to get the one-way time, resulting in an
average time of 380 microseconds with standard deviation
of 14 microseconds. (A ping taken at the same time had
a one-way average time of 120 microseconds.) On the
application side, we measured the time from right after the
network module had read the update to the time when the
application communication module generated an event to the
application, for an average time of 17 microseconds with
standard deviation of 15 microseconds. The total time that
our system added to the update was 433 microseconds. The
Space Navigator operates as a rate of 62.5 Hz, or every 16
ms, so 433 microseconds will not add a perceptible delay.

B. The Networked Device Driver Compared to VNC

To show how our system compared to custom device-
forwarding applications, we compared a networked device
driver built for the video card to the classic thin client
VNC. We measured their performance displaying a video
of a television show, running at 24 frames per second. We
instrumented both VNC and the networked device driver to
record how long it took to receive and display each frame.
After initialization the VNC client goes into a loop where it
reads and processes an update, sends a request to the server,
and then waits for the next update. We instrumented the
client to measure how long it takes for the client to go

Figure 3. The video card networked device driver compared to VNC.

through each iteration of this loop. Similarly, the application
communication module for the video card runs in a loop
where it reads in an update, and writes that information to
the framebuffer. We added code to this module to measure
how long it takes for each cycle of reading and updating.
We averaged over 2000 updates.

In Fig.3 we compare the frames per second for different
average pixels per frame being transmitted by both systems.
Since VNC transmits less than the entire frame when not all
pixels have changed between frames, this is a lower value
than the frame size. For lower average pixel values, in the
forty-five to fifty-five thousand pixel range, the networked
device driver sends an average of 139 frames per second,
while VNC sends an average of 23 frames per second. This
is due to VNC only sending updates when there is a change
in the pixel values, limiting it to the video’s frame rate.
However, when the update rate drops below frame rate at
around 200,000 pixels, we see that the networked device
driver sends slightly more frames per second than VNC. As
we increase the average numbers of pixels per frame, the
networked device driver keeps pace with VNC, generating
as many or more frames per second. The performance of
our generic networked device driver is on par with that of
VNC, an application specifically designed and optimized for
forwarding video card data.

C. Adding Transformation Modules

A key component of our system is the ability to add
transformation modules to process updates for the network.
Our system is implemented using pipes to transfer data
between modules. In this experiment, we demonstrated that
adding transformation modules does not create significant
overhead due to memory copies. We compared the net-
worked device driver running the compression module to the



Figure 4. The Video Card Networked Device Driver, with and without
compression, compared to VNC.

networked device driver without it. The purpose of this ex-
periment is not to demonstrate speed-up from compression:
we are running on a fairly high-bandwidth network, and
not compressing significantly enough to cause significant
improvement. Instead, we wish to demonstrate that the
memory copying and added computation from compression
does not cause a significant detriment to performance.

At twenty-eight thousand pixels per frame, on the lower
side of the spectrum, the networked device driver with
compression has a lower frame rate than the one with
compression, at 86 frames per second versus 139 frames
per second. However, it is still significantly above the actual
frame rate of the video, at 24 frames per second. Once
the frame rate of both versions of the networked device
driver is below the frame rate of the video, at three hundred
thousand pixels, the difference in frame rates remains below
two frames per second. The frame rate of the networked
device driver with compression also remains consistent with
VNC’s frame rate. These results demonstrate that adding a
transmission module to the networked device driver does not
cause a significant drop in performance.

VI. RELATED WORK

The two classic approaches to sending I/O over the
network are demonstrated by X-Windows [7] and VNC [8].
In X-Windows, the high level commands sent to the video
driver by the application are sent over the network, and
interpreted by the video driver on the local machine. A
drawback is that applications must be specifically written for
X-Windows in order to work with it. In VNC, the pixel data
is copied from the framebuffer and sent to the client, where it
is rendered by a user-space application. While this preserves
transparency, VNC is limited in that it is designed expressly
for mouse, keyboard and video data, and it is difficult at

best to add support for new I/O devices (the same is true
for X-Windows).

Work on USB over IP has focused on sending device
information below the driver level [9]. On the server where
the device is physically located, the USB updates are col-
lected by a stub driver below the USB core driver and sent
over the network to the client. On the client, updates are
sent from a Virtual Host Controller Interface Driver up to
various virtualized USB drivers. This has the advantages of
both transparency and full functionality. However, there is
no way to change the network behavior of different devices
or control how different updates are sent.

THINC [10] and CameraCast [11] both use logical drivers
in systems designed for video data being sent over a net-
work. CameraCast also allows users to create intermediate
modules to process the video being sent. However, both
of these systems are focused on specific devices (mouse,
keyboard, video card, and audio card in THINC, webcams
in CameraCast), and the THINC system does not allow for
users to add application-specific modules to process data.

There are many systems that create distributed environ-
ments for processing device input data for specific domains,
where applications are written for these environments, and
input data is passed through a series of processing ”filters”.
These include The Berkeley Continuous Media Toolkit for
distributed multimedia applications, Cascades for sensor
networks, and a variety of systems for virtual reality appli-
cations, including Open Tracker [12], [13], [14], [15], [16].

Other systems have been designed with the idea of being
able to modify I/O data. The classic work is the UNIX
Streams system [17]. Plan 9 builds on UNIX Streams,
but with better integration for the network and its 8 1/2
windowing system [18], [19].

Ishii et al. describe a datastream approach to processing
sensor data in the cloud [20]. They use this approach to
distribute pieces of the processing application throughout the
cloud. This is significantly different from our system, where
we use a data stream approach to process device data before
it reaches the application, and use module pairs to ensure
the data reaches the application in its original format.

Finally, Yang et al. describe methods for improving both
performance and fault tolerance of messaging in cloud
system [21], [22]. Such methods might be useful in the
remote I/O system we describe.

VII. CONCLUSION

In this work, we presented the networked device driver
architecture to support remote I/O devices. This architecture
is especially relevant to the cloud, as it allows applications
running in virtual machines in the cloud to easily communi-
cate with I/O devices on a user’s device. To support network
transparency, we encapsulated all networking and related
processing inside the device driver. This means applications
do not need to be modified to work with remote devices.



Inserting the network between the application and device
means our system needs to be able to handle issues such
as security, latency, bandwidth restrictions, and jitter. Fur-
thermore, each device and application may have a different
ideal solution to these problems, requiring different solutions
for different device and application pairings. To support
customizability while preserving transparency, we intro-
duced the idea of transformation modules, processes which
enact transformations on the I/O stream. These modules are
invisible to the application and device, yet let the system be
customized for the exact needs of an individual application
and device, and their particular network conditions.

In our experiments, we showed that converting a device
driver to a networked device driver, with a significant portion
of the implementation operating at user level, does not
cause excessive overhead. We also showed that a networked
device driver created for the video card is competitive in
performance with VNC, a thin client device developed and
optimized for forwarding video over the network. Lastly, we
showed that adding transformation modules to our system
greatly extends flexibility. We demonstrated that our system
allows for both network transparency and customized pro-
cessing of the data stream to compensate for the network,
without a significant performance burden.

REFERENCES

[1] X. Meng, J. Shi, X. Liu, H. Liu, and L. Wang, “Legacy appli-
cation migration to cloud,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on. IEEE, 2011, pp.
750–751.

[2] C. Phanouriou and M. Abrams, “Transforming command-line
driven systems to web applications,” Computer Networks and
ISDN Systems, vol. 29, no. 8-13, pp. 1497–1505, 1997.

[3] C. Waldspurger and M. Rosenblum, “I/o virtualization,” Com-
munications of the ACM, vol. 55, no. 1, pp. 66–73, 2012.

[4] J. Pasquale, E. Anderson, and P. Muller, “Container shipping:
operating system support for i/o-intensive applications,” Com-
puter, vol. 27, no. 3, pp. 84–93, 1994.

[5] “3d Connexion Space Navigator.” [Online]. Available:
http://www.3dconnexion.com/

[6] S. Venkateswaran, Essential Linux device drivers. Prentice
Hall Press, 2008.

[7] R. W. Scheifler and J. Gettys, “The x window system,” ACM
Trans. Graph., vol. 5, no. 2, pp. 79–109, 1986.

[8] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper,
“Virtual network computing,” Internet Computing, vol. 2,
no. 1, pp. 33–38, 1998.

[9] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara,
“USB/IP: a peripheral bus extension for device sharing over
IP network,” in Proceedings of the annual conference on
USENIX Annual Technical Conference. USENIX Associ-
ation, 2005, p. 42.

[10] R. A. Baratto, J. Nieh, and L. Kim, “THINC: A Remote Dis-
play Architecture for Thin-Client Computing,” Department of
Computer Science, Columbia University, Computing Science
Technical Report CUCS-027-04, 2004.

[11] J. Kong, I. Ganev, K. Schwan, and P. Widener, “Cameracast:
Flexible access to remote video sensors,” in Proceedings of
the ACM Multimedia Computing and Networking Conference
(MMCN). Citeseer, 2007.

[12] K. Mayer-Patel and L. Rowe, “Design and performance of the
berkeley continuous media toolkit,” in Multimedia Computing
and Networking. Citeseer, 1997, pp. 194–206.

[13] J. Huang, W. Feng, N. Bulusu, and W. Feng, “Cascades:
Scalable, flexible and composable middleware for multi-
modal sensor networking applications,” in Proceedings of The
ACM/SPIE Multimedia Computing and Networking. Cite-
seer, 2006.

[14] G. Reitmayr and D. Schmalstieg, “OpenTracker: A flexible
software design for three-dimensional interaction,” Virtual
Reality, vol. 9, no. 1, pp. 79–92, 2005.

[15] J. von Spiczak, E. Samset, S. DiMaio, G. Reitmayr,
D. Schmalstieg, C. Burghart, and R. Kikinis, “Multi-modal
event streams for virtual reality.,” in Proc. 14th SPIE An-
nual Multimedia Computing and Networking Conference
(MMCN’07), San Jose, California, 2007.

[16] T. Hudson, A. Seeger, H. Weber, J. Juliano, and A. Helser,
“VRPN: a device-independent, network-transparent VR pe-
ripheral system,” in Proceedings of the ACM symposium on
Virtual reality software and technology. ACM New York,
NY, USA, 2001, pp. 55–61.

[17] D. Ritchie, “A stream input-output system,” AT&T Bell Lab-
oratories Technical Journal, vol. 63, no. 8, pp. 1897–1910,
1984.

[18] D. Presotto, R. Pike, K. Thompson, and H. Trickey,
“Plan 9: A distributed system,” in Proceedings of Spring
1991 EurOpen, 1991, pp. 49–56. [Online]. Available:
citeseer.ist.psu.edu/presotto91plan.html

[19] R. Pike, “8 1
2

, the Plan 9 window system,” in Proceedings
of the Summer 1991 USENIX Conference, Nashville, TN,
USA, June 10–14, 1991. Berkeley, CA, USA: USENIX,
1991, pp. 257–265 (of x 473). [Online]. Available:
citeseer.ist.psu.edu/article/pike91plan.html

[20] A. Ishii and T. Suzumura, “Elastic stream computing with
clouds,” in Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 195–202.

[21] C. Hsu, A. Cuzzocrea, and S. Chen, “Cad: an efficient data
management and migration scheme across clouds for data-
intensive scientific applications,” Data Management in Grid
and Peer-to-Peer Systems, pp. 120–134, 2011.

[22] C. Yang, W. Chou, C. Hsu, and A. Cuzzocrea, “On improve-
ment of cloud virtual machine availability with virtualization
fault tolerance mechanism,” in Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International
Conference on. IEEE, 2011, pp. 122–129.


